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Abstract

Many traditional panel data methods are designed to estimate homogeneous coeffi-

cients. While a recent literature acknowledges the presence of coefficient heterogeneity, its

main focus so far has been on average effects. In this paper we review various approaches

that allow researchers to estimate heterogeneous coefficients, hence shedding light on how

effects vary across units and over time. We start with traditional heterogeneous-coefficients

fixed-effects methods, and point out some of their limitations. We then describe bias-

correction methods, as well as two approaches that impose additional assumptions on the

heterogeneity: grouping methods, and random-effects methods. We also review factor and

grouped-factor methods that allow coefficients to vary over time. We illustrate these meth-

ods using panel data on temperature and corn yields, and find substantial heterogeneity

across counties and over time in temperature impacts.
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1 Introduction

Fixed-effects methods are widely popular in applied practice. Examples include fixed effects

for individuals, firms, cities, counties, countries, products, markets, years, days of the year, and

times of the day, to cite a few. A notable example of the use of fixed effects is two-way fixed-

effects estimation for difference-in-differences, which has become a leading method in applied

economics.

Traditionally, researchers have used fixed effects to control for the presence of unit-specific

heterogeneity. First-differencing, within-group, and quasi-differencing methods all attempt to

difference-out the fixed effects. Increasingly, however, applied researchers have been viewing

effects heterogeneity as a central focus of their work.

In the presence of heterogeneity, a concern is that estimates based on constant-coefficients

models, such as two-way fixed-effects estimators, recover difficult-to-interpret weighted averages

of individual effects. A growing literature aims at determining whether those weights are

positive and, if not, modifies the methods to estimate positively-weighted average effects, see

De Chaisemartin and d’Haultfoeuille (2023), Roth, Sant’Anna, Bilinski, and Poe (2023), and

Callaway (2023) for surveys.

However, the focus on average effects makes only partial use of the data, and may mask

important effects heterogeneity. Panel data, of the type used in many two-way fixed-effects

applications, provides researchers with the opportunity to estimate the heterogeneity in effects.

The goal of this paper is to review a variety of methods, developed in the past few decades,

which can be used to estimate heterogeneous effects under suitable assumptions, thus going

beyond averages or weighted averages.

To fix ideas, consider the following linear model for an outcome Yit and a covariate Xit:

Yit � βitXit � αit � εit, i � 1, ..., n, t � 1, ..., T. (1)

In (1), αit represents the level of the outcome, and βit represents an heterogeneous “treatment

effect”; i.e., the marginal effect of an increase in Xit. For example, when Xit P t0, 1u is binary,
βit is equal to the difference in outcomes between two hypothetical values Xit � 1 and Xit � 0.

For simplicity here we abstract from the presence of other covariates, although those are often

present in applications.

Two-way fixed-effects estimation is based on three key assumptions in model (1). The first

assumption is that

αit � αi � δt, (2)
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which is commonly referred to as a “parallel trends” specification. The second assumption is

that the coefficient of Xit is constant,

βit � β. (3)

The third assumption is that errors εit are mean independent of Xi1, ..., XiT and have mean

zero. While this strict exogeneity assumption is empirically restrictive, it is commonly imposed

in applications and we will maintain it in this paper.

A popular line of research in recent years has been to maintain the parallel trends speci-

fication for αit in (2), while fully relaxing (3) by allowing βit to be heterogeneous in unrestricted

ways. Influential contributions include Goodman-Bacon (2021), Callaway and Sant’Anna (2021),

De Chaisemartin and d’Haultfoeuille (2020), Sun and Abraham (2021), and Borusyak, Jaravel,

and Spiess (2024). There is also recent work relaxing the parallel trends assumption (2) (see

Rambachan and Roth, 2023). The chief goal of these approaches is to learn about certain

weighted averages of the βit’s.

If the effects βit are unrestricted, there is no way to estimate them consistently. In that case,

the best researchers can hope for is to estimate some average or weighted average of effects.

However, researchers may be willing to impose certain assumptions on βit, while not restricting

them to be constant as in (3). Doing so makes it possible to learn about how βit varies across

individual units and over time.

To estimate not only weighted average effects but also other characteristics of the βit’s such

as their dispersion, available methods in the literature impose additional assumptions on the

error terms εit beyond the fact that they have zero mean given Xi1, ..., XiT . To identify variance

components in a fixed-T panel, typical assumptions are that εit have zero mean conditional

on Xi1, ..., XiT and βit, and that the εit’s are either serially independent or satisfy dynamic

covariance restrictions (e.g., Arellano and Bonhomme, 2012, Bonhomme, 2025). In dynamic

settings where εit are interpreted as “shocks”, such assumptions may be natural and are often

made in panel data applications. While they impose restrictions on potential outcomes that

are not necessary when the goal is only to recover average effects, relying on these assumptions

allows researchers to recover other features of the distribution of heterogeneity.

Consider first the case where heterogeneous effects βit � βi do not vary over time. Then,

the parameters βi are fixed effects that can be estimated given a long enough panel. When

the time dimension is short or moderate, however, estimates of βi tend to be noisy. A pressing

question in practice is whether the dispersion in estimates of βi reflects actual heterogeneity,

or whether it is due to sample noise; i.e., to the fact that each βi is estimated with error.

We will review various approaches that address the issue of noise. The first class of methods
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Figure 1: Examples of time-invariant heterogeneity

(a) Discrete heterogeneity (b) Continuous heterogeneity (c) Sparse heterogeneity
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Notes: histogram or density of the βi’s under three assumptions: discrete (a), continuous (b), and sparse (c).

do not impose further restrictions on βi, but acknowledge the presence of noise in the estimates.

Exact and approximate bias-correction methods have been developed in recent years and are

now well understood and applicable (e.g., Hahn and Newey, 2004, Arellano and Hahn, 2007).

However, bias-correction methods suffer from some of the same issues as fixed effects. In

practice, due to low variability in covariates, the fixed effects estimates pβi cannot be calculated

for some units (which get automatically dropped from the sample). In addition, fixed-effects

methods and their bias-corrected counterparts are based on unit-by-unit estimation, which does

not benefit from any pooling in the cross-section.

These issues can be alleviated if one is willing to impose some assumptions on βi. A possible

strategy is to model βi � βpWiq as a function of observed covariates. In this review we focus

on methods that allow for unobserved heterogeneity βi, possibly correlated with covariates Wi.

We will review methods based on two assumptions: that βi are grouped (see Figure 1 panel

(a)), or that they follow some parametric or semi-parametric distribution (see Figure 1 panel

(b)). Both grouping methods based on discrete heterogeneity (e.g., Bonhomme and Manresa,

2015), and random-effects methods with their connections to empirical-Bayes shrinkage (e.g.,

Efron, 2012, Gu and Koenker, 2017), can offer meaningful reduction in noise and improve the

quality of heterogeneity estimates. Another, third assumption, pictured in panel (c) of Figure

1, would be that the βi’s are sparse, so most of the βi values are equal to zero or to a common

value. However, sparsity is not a common model to describe coefficient heterogeneity and we

will not consider it here.

Consider next the case where βit varies over time. In many applications, allowing for

variation over time is empirically important. A common assumption is that the n � T matrix

with elements βit has low rank, which corresponds to a factor structure. A simple example is

represented in Figure 2 panel (a), which corresponds to an additive model of βit as the sum of
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Figure 2: Examples of time-varying heterogeneity

(a) Parallel trends in βit (b) Factor structure (c) Group-specific trends
0

Time t

C
oe

ffi
ci

en
t β

it

0

Time t

C
oe

ffi
ci

en
t β

it

0

Time t

C
oe

ffi
ci

en
t β

it

Notes: values of βit over time t, where each line is a different unit i, under three assumptions: parallel trends

(a), factor structure (b), and group-specific trends (c).

a unit fixed-effect and a time fixed-effect. However, factor structures can accommodate more

general patterns of heterogeneity. A simple example is shown in Figure 2 panel (b), which

pictures a one-factor specification. Moreover, the intercept αit can also be modeled using a

factor structure, thus relaxing the parallel trends assumption (2). We will review methods for

interactive fixed-effects regression and its generalizations, building on Bai (2009).

A drawback of factor methods is that they do not address the noise issue in fixed-effects

estimation. Indeed, compared to the case where βi is time-invariant but otherwise unrestricted,

factor models depend on numerous additional parameters. This can make their use problematic

in settings where the time dimension is not sufficiently large. An alternative approach relies

on the assumption that βit follows some group-specific time trend, as represented in Figure 2

panel (c). We will review such grouped-factor methods and highlight their ability to capture

time variation in unit heterogeneity.

We will illustrate a number of these methods by estimating how temperature affects agri-

cultural output, specifically corn production, in the US. A large literature, including Deschênes

and Greenstone (2007), Schlenker and Roberts (2009), and Burke and Emerick (2016) estimates

temperature impacts based on some variants of two-way fixed-effects. Estimates of temperature

impacts are key inputs to calculations of the costs of climate change, and documenting how

these impacts vary across counties in the US and over time is important to inform such calcu-

lations, as recently demonstrated by Keane and Neal (2020). We will report estimates based

on various methods, including bias-corrected estimates, grouped and grouped-factor methods,

and random-effects methods, allowing for effects heterogeneity across space but also over time.

While this paper focuses on bias correction, grouping, random-effects, and factor approaches,

it omits other related methods. Many of the other methods we do not review focus on aver-
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age effects. For example, there is a large earlier literature on slope heterogeneity in panel

data (e.g., Hsiao and Pesaran, 2008, Wooldridge, 2005). The recent literature on treatment

effects estimation using panel data pursues a related goal, see Arkhangelsky and Imbens (2023)

and the recent survey in Arkhangelsky and Imbens (2024). We also do not cover work using

synthetic control and synthetic difference-in-differences methods (e.g., Abadie, Diamond, and

Hainmueller, 2010, Arkhangelsky, Athey, Hirshberg, Imbens, and Wager, 2021).

The outline of the rest of the paper is as follows. In Section 2 we present our empirical

illustration to quantify the impact of temperature on corn yields. In Section 3 we describe

fixed-effects methods, and we review approaches to bias correction in Section 4. In Sections

5 and 6 we review grouped fixed-effects and random-effects methods. Lastly, in Section 7

we review factor and grouped-factor methods to allow for time-varying heterogeneity, and we

conclude in Section 8. Replication files are available online.

2 An illustrative application: agriculture and the weather

To illustrate the methods, we will use US panel data to study the relationship between tem-

perature and agricultural output.

2.1 Model and objectives

Consider panel data on counties i � 1, ..., n and years t � 1, ..., T . Let Yit denote corn yields,

which are our measure of agricultural output. Let Xit denote a measure of temperature. We

will estimate various versions of the following model:

Yit � βitXit � αit �W 1
itγ � εit, (4)

where Wit includes a set of control variables (i.e., precipitation and state-year indicators) and

εit is a mean-zero error term.1,2

A special case of (4) is

Yit � βXit � αi � δt �W 1
itγ � εit. (5)

1Note that, while here γ is homogeneous across units and over time, it is possible to allow it to be heteroge-

neous as well (for example, group-specific).
2In this setting, the assumption of strict exogeneity may be invalid if policies respond to temperature changes

and are unobserved to the econometrician (e.g., part of εit). Consistently with the literature, we will assume

strict exogeneity while including state-year fixed effects in Wit, hence capturing possible policy responses if

those happen at the state level.
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A common approach in the literature relies on within-county regressions based on (5) to estimate

short-run temperature impacts. Estimates of β inform the projected costs of climate change

scenarios (e.g., Deschênes and Greenstone, 2007, Dell, Jones, and Olken, 2014). Note that (5)

is a two-way fixed-effects regression model.3

The methods we review in this paper will allow us to generalize (5) and estimate various

versions of model (4). Our main goal when relaxing (5) is to allow βit to be heterogeneous

across counties and over time. This heterogeneity is of substantive interest for climate change

calculations (Keane and Neal, 2020). We will document heterogeneity in temperature impacts

across space and over time.

2.2 Data and preliminary evidence

We use two sources of data. For the weather variables, we use a balanced dataset of US counties

since 1950, constructed from daily weather records.4 We aggregate the data at the county-year

level. For the output variables we focus on corn yields, and use an unbalanced panel of US

counties for the period 1950–2005 constructed by Burke and Emerick (2016), which comes from

the US Department of Agriculture’s National Agricultural Statistics Service.5

Following the literature, we focus our analysis of corn yields, measured in bushels per acres

planted, on counties east of the 100th meridian where agriculture is primarily rainfed as opposed

to irrigated, which account for the vast majority of US corn production. The sample for analysis

drops observations without yields or corn area, and only keeps counties that have at least 10

years of valid data. This sample has 2,253 counties and 107,004 observations. We assume that

observations are missing at random conditional on covariates and heterogeneity.

As our main weather variable we focus on temperature, measured as average daily degree

Celsius above zero from April 1st to September 30th, which is the growing season for corn. It

is worth noting at the outset that the within–county variance in temperature is only 5.7% of

the total variance. Although temperature is the main focus of our analysis, we also control

for average daily precipitation during the growing season each year, in millimeters per day. In

Appendix Table A1 we report descriptive statistics on the weather variables, corn yields, and

the area of corn production.

3In the specifications where state-year indicators are part of Wit, it is not necessary to include the coefficients

δt in (5) since the model already accounts for the presence of year fixed effects that vary across states.
4The records are based on PRISM data and available on Wolfram Schlenker’s website.
5We downloaded the data from the AEA’s website. The data period in the sample used by Burke and

Emerick (2016) ranges until 2010. However, the number of counties decreases by more than 40% for the last 5

years. For this reason, we do not include those years in our analysis.
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Figure 3: Temperature and de-trended yields

−20

−10

0

10

20

18

19

20

21

22

1950 1960 1970 1980 1990 2000
Year

Y
ie

ld
 (

de
−

tr
en

de
d)

 (
bu

/a
cr

e)
Tem

perature (C
)

Notes: un-weighted statistics across counties. Yields are measured in bushels per acre. Temperature is measured

in average daily degree Celsius above zero during the growing season. De-trended yields are shown in solid (left

axis), temperature in dashed (right axis).

Our focus on the marginal impact of one additional degree on yields misses several important

margins that have been emphasized in the literature on the agricultural impacts of changing

temperatures. Previous work has shown that the impact of temperature on yields is nonlinear

(e.g., Schlenker and Roberts, 2009). Such nonlinearity is not captured by the homogeneous

specification (5). However, specifications allowing for βit in (4) to be heterogeneous and corre-

lated with temperature do allow temperature effects to depend on temperature levels. A more

general specification would allow for square or high-order terms in temperature Xit in (4). An-

other restrictive feature of our main equation is the absence of a role for extreme temperatures

and other climatic events, which have been shown to be important (e.g., Miller, Chua, Coggins,

and Mohtadi, 2021). A third feature is the absence of a role for farmers’ adaptation to changing

temperatures (Burke and Emerick, 2016, Keane and Neal, 2020).

We first plot temperature and de-trended yields over the sample period. Figure 3 shows

clear evidence of a negative correlation between the two, suggesting that higher temperatures

lead to lower output. To account for heterogeneity over time and across counties in the level

of yields and temperature (yet not for heterogeneity in temperature effects), it is common to

estimate some version of equation (5).

We report estimates of such regressions in Table 1, for a variety of controls that always

include precipitation, and, in the richest specification in column (4), also include county and

state-year fixed-effects. In that specification, parallel trends are required to hold within state,

but state-specific trends are unrestricted. All the specifications require the temperature effects

β to be constant across counties and over time.
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Table 1: Regression estimates with constant coefficients

(1) (2) (3) (4)

Temperature -3.902 -3.021 -4.108 -6.729

(0.697) (1.314) (0.840) (0.894)

Precipitation 5.801 7.685 3.074 2.010

(1.605) (1.109) (0.533) (0.395)

Observations 107,004 107,004 107,004 107,004

County FE No Yes Yes Yes

Year FE No No Yes Yes

State-year FE No No No Yes

Notes: un-weighted regressions of corn yields on temperature and precipitation. Standard errors are clustered at

the state level.

The estimates in Table 1 show that an increase in one degree per day is associated with a

drop in yields of 6.7 bushells per acre, which represents a 9% drop relative to the average level

of the yields. This estimate is over 50% larger than estimates that do not account for state-year

fixed-effects.6

3 Fixed-effects

In this section we first review traditional fixed-effects methods.

3.1 Model and assumptions

We start by assuming that effects βit are constant over time, equal to βi, and we estimate

various versions of the following two-way fixed-effects model with slope heterogeneity:

Yit � βiXit � αi � δt �W 1
itγ � εit. (6)

In the following we will focus on the case where Xit is scalar, since this corresponds to the

case of our application. However, the methods are easily extended to the case where Xit is

6Consistently with the literature, we cluster standard errors at the state level. Since there are only 31 states,

we also computed Driscoll-Kraay standard errors as a robustness check, see Appendix Table B2.
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multivariate and βi is a vector.7

Note that assuming βit � βi restricts the n� T matrix

B �

������
β11 β12 ... β1T

β21 β22 ... β2T

... ... ... ...

βn1 βn2 ... βnT

�����
 (7)

to have identical columns. However, the fixed-effects approach leaves effects heterogeneity un-

restricted across units. For example, it allows for situations where the βi’s are correlated across

counties, and are correlated with temperature and precipitation in all counties in arbitrary

ways.

In model (6), ordinary least squares (OLS) regression gives the fixed-effects estimators

pγ,pδ1, ...,pδT , pα1, ..., pαn, pβ1, ...,
pβn.

We will focus on the coefficients pβi, which are estimates of βi, for i � 1, ..., n. We now list three

common assumptions under which we will review some properties of these estimators.

Assumption 1. The matrix of regressors in (6) has full rank.

Assumption 1 requires sufficient variation in the regressors. In models with slope and

intercept heterogeneity this requires Xit to vary over time. To see this, consider the following

simplified version of model (6), without additional covariates and time effects:

Yit � βiXit � αi � εit. (8)

In model (8) we have pβi �
°T

t�1

�
Xit �X i

� �
Yit � Y i

�°T
t�1

�
Xit �X i

�2 , (9)

where Zi � 1
T

°
t�1 Zit denotes the unit-specific average of any random vector Zit. The denom-

inator in (9) is proportional to the within-county variance of Xit. Good behavior of pβi, in the

sense of a low variance, will require sufficient variability of Xit over time.

Assumption 2. The covariates Xi � pXi1, ..., XiT q1 and Wi � pW 1
i1, ...,W

1
iT q1 are strictly ex-

ogenous, in the sense that

Erεit |Xi,Wis � 0 for all i � 1, ..., n and t � 1, ..., T.
7A practically important case where multivariate βi’s arise is when Xit includes lags of a covariate of interest.

However, allowing for multivariate βi’s is more demanding than only allowing for scalar heterogeneity. The issues

with fixed-effects estimation that we will highlight below become even more salient in the multivariate case.
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Strict exogeneity restricts εit to be mean independent not only of past and current covariates,

but also of future covariates. This is a strong assumption that rules out the presence of feedback

from past outcomes to future covariates. See Arellano (2003b) for discussions of this assumption.

Under Assumption 2, the pβi’s are unbiased:8

E
�pβi

�
� βi.

Assumption 3. Observations are independent across i.

We will impose Assumption 3 for simplicity. Note that the controls Wit may include time

effects, and they will include state-time indicators in our application. The inclusion of time

effects captures some sources of cross-sectional dependence. Moreover, inference methods al-

lowing for common shocks across individual units, in addition to serial correlation within units,

have been developed in recent years, see in particular Andrews (2005), Kuersteiner and Prucha

(2013), and Kuersteiner and Prucha (2020).

3.2 Mean and variance of fixed effects

Given Assumptions 1, 2 and 3, we now review some properties of fixed-effects estimators. Here

we treat the βi’s as fixed parameters. We will do so throughout the paper, except in Section 6

that deals with random-effects methods, where we will treat the βi’s as random variables.

Let pE �pβ� � 1

n

ņ

i�1

pβi (10)

denote the mean of the fixed-effects estimates, sometimes referred to as the mean-group estima-

tor. Suppose that Assumptions 1 and 2 hold, so in particular covariates are strictly exogenous.

Then the mean-group estimator (e.g., Chamberlain, 1992, Pesaran and Smith, 1995) is an

8Although we will maintain Assumption 2 throughout the paper, fixed-effects and grouped fixed-effects

methods remain theoretically justified as n and T tend to infinity under sequential exogeneity, that is,

Erεit |Xi1, ..., Xit,Wi1, ...,Wits � 0 for all i � 1, ..., n and t � 1, ..., T,

even though the pβi’s are no longer unbiased in that case. Note that, in contrast with strict exogeneity, sequential

exogeneity allows future valuesXi,t�h (for h ¥ 1) to correlate with past errors εit. See for example Fernández-Val

and Lee (2013).
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unbiased estimator of the average of the effects (or average treatment effect)9

pE rβs � 1

n

ņ

i�1

βi,

since we have

E
�pE �pβ�	 � pE rβs .

Moreover, under suitable regularity conditions, the mean-group estimator is also consistent

for the average of the βi’s. Consistency holds as the cross-sectional size n tends to infinity,

irrespective of whether T is fixed or tends to infinity. That is, as n tends to infinity,

pE �pβ� � pE rβs � opp1q.

The conditions for consistency of the mean-group estimator require sufficient variability of

Xit over time. In practice, mean-group estimates may not behave well when the covariates of

some individual units exhibit low variation over time. Graham and Powell (2012) point out this

issue in the context of heterogeneous-coefficients panel data models with continuous covariates,

and propose a trimming strategy for consistent estimation. Notice that the requirement for

sufficient time variation is already apparent in Assumption 1.10

Next, let yVar�pβ	 � 1

n

ņ

i�1

�pβi � pE �pβ�	2

(11)

denote the sample variance of the fixed-effects estimates. Under the same assumptions, the

sample variance is biased for the sample variance of the effects βi,

yVar pβq � 1

n

ņ

i�1

�
βi � pE rβs	2

.

Specifically, we have, under Assumptions 1 and 2,

E
�yVar�pβ	� � yVar pβq � Bias,

9Here, the estimand pE rβs is conditional on the units in the sample. An alternative target parameter, in a

setting where the units are a random sample from some population, would be the expectation of βi with respect

to the distribution from which it has been drawn.
10To illustrate, consider model (8) with a binary covariate and T � 2. In that case, identification of the average

1
n

°n
i�1 βi requires Xi1 � Xi2 for all individual units i � 1, ..., n (i.e., that all units be so-called “movers”). If

nowXit is continuous, identification only requiresXi1 � Xi2 to hold almost surely, yet the mean-group estimator

may be ill-behaved when a mass of individuals have Xi1 � Xi2 (i.e., when there are “near stayers”).
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where the bias term is positive. Intuitively, the dispersion in the fixed-effects estimates reflects

not only the dispersion in the true effects, but also some additional dispersion due to noise.

To derive the expression for the bias term, consider for simplicity model (8) without covari-

ates. Using Assumptions 1, 2 and 3 we obtain

Bias �
�
1� 1

n



E

��� 1

n

ņ

i�1

°T
t�1

°T
s�1

�
Xit �X i

� �
Xis �X i

�
εitεis�°T

t�1

�
Xit �X i

�2�2
��� . (12)

We notice in (12) that the bias does not go away as n tends to infinity. However, it tends

to decrease as T grows, and to vanish as T tends to infinity. A typical order of magnitude is

Op1{T q, meaning that the bias is twice as small when the panel length double. We also see that

the magnitude of the bias is affected by the lack of variability in Xit over time, as reflected by

the sample variance of Xit in the denominator in (12). Lastly, we see the impact of the noise

through the presence of εit. Everything else equal, a larger variance of εit tends to increase the

bias, and a higher persistence among εit’s over time tends to lead to larger bias as well.

Remark 1. (Restrictions on potential outcomes) Given our focus on variances, and more

generally on quantities that are not weighted averages of the βi’s, our assumptions restrict

potential outcomes. To see this, consider the binary case Xit P t0, 1u in model (8), and denote

Yitp0q � αi � εit and Yitp1q � βi � αi � εit. To highlight the restrictions the model imposes on

those potential outcomes, it is useful to treat the βi’s as random variables. Then, to recover

the mean of effects it suffices that Erεit |Xis � 0, where we highlight that the expectation is

not conditional on βi. However, to recover the variance of effects we have used two additional

assumptions. First, we have assumed Erεit |Xi, βis � 0, otherwise their would be a covariance

term between βi and εit, and the form of the bias would be different. Second, we have assumed

that εit have limited dependence over time, since if dependence is unrestricted the bias term in

(12) cannot be consistently estimated. Both conditions restrict Yitp0q and Yitp1q beyond parallel

trends.

3.3 Four issues with fixed effects

In models with heterogeneous parameters such as (6), fixed-effects methods are useful tools

to quantify the heterogeneity in individual responses. However, fixed-effects estimators suffer

from four main issues that limit their appeal for applied practice.

The first issue is apparent from the analysis of the variance that we have just reviewed:

fixed-effects are noisy, which tends to bias the parameters of interest, such as the dispersion in
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individual coefficients. Should one trust the dispersion of fixed-effects estimates, or are those

partly capturing spurious heterogeneity?

The second issue is that, in many data sets, some fixed effects cannot even be calculated, due

to lack of variation in covariates for some individual units. Technically, this reflects a violation

of Assumption 1, which is a common occurrence in applications. Although the fixed-effects

approach has the merit of clearly highlighting the need for extrapolation when using other

approaches, it comes at the cost of narrowing the sample. This issue gets sometimes unnoticed

in empirical work, since statistical software often automatically drops observations and their

associated coefficients when those are not identified.

The third issue is that the fixed-effects approach relies on i-by-i estimation, without aiming

at exploiting any information across individual observations. As an illustration, consider model

(8) without additional covariates. We see that each estimate pβi in (9) only depends on the

observations Yit and Xit corresponding to the individual unit i, without any sort of pooling

across individual observations.

The last issue with fixed-effects is an obvious one: fixed effects are fixed over time. It is

not possible to adopt a fixed-effects approach to estimate unrestricted βit parameters (although

some quantities may still be identified, see Bonhomme, 2025). However, in applications, it is

often appealing to allow for time variation in individual responses.

In the subsequent sections we will review various approaches that aim at dealing with these

four issues with fixed-effects estimation. Before doing so, we start by reporting fixed-effects

estimates in our application.

3.4 Illustration

We estimate model (6) with county-specific coefficients βi, where we control for state-year

fixed effects and county fixed effects, in addition to precipitation. Column (2) in Table 2

shows that the average pβi in the sample is �8.0.11,12 This is larger than the estimate based

on a homogeneous specification (compare with column (1)). Moreover, the average masks

considerable heterogeneity. In some counties, temperature has small effects on corn yields:

the estimate is �2.6 at the 90th percentile. However, in other counties, the effects are more

detrimental, as evidenced by the value of the 10th percentile (-14.7). The standard deviation

of pβi is 4.9.

11In this average, counties are weighted by the total corn area in years they appear in the sample. We proceed

similarly for other quantities such as variances and percentiles of effects.
12Standard errors are obtained using a cross-sectional bootstrap method that we will describe in Section 4.
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Figure 4: Fixed-effects estimates with heterogeneous coefficients

(a) Marginal density (short panel in dashed) (b) Spatial distribution
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Notes: panel (a) shows the weighted density of marginal effects across counties and years estimated in the long

panel 1950–2005 (solid line), versus the one estimated in the short panel 1990–2005 (dotted line) for the same

sample of counties. Panel (b) plots the marginal effects per county estimated using the full sample.

County heterogeneity in temperature impacts can be seen in the kernel estimate of the

density of pβi shown in solid line in the left panel of Figure 4.13 While effects are overwhelmingly

negative, the estimates show a thick left tail of large negative impacts. To assess the extent of

spatial heterogeneity, in the right panel of Figure 4 we plot the estimates pβi on a map of the

US.14

In the appendix we report two sets of robustness checks to assess how our findings are

affected by some specification changes. Some authors use log yields instead of yield levels

as the left-hand side variable. In Appendix B.3 we show estimates under this specification.

Moreover, some authors rely on different measures of temperature, which capture temperature

under normal conditions (“growing degree days”) and extremely high temperatures (“killing

degree days”), see for example Keane and Neal (2020). In Appendix B.4 we report estimates

based on such a specification. We find that, relative to the marginal effects coefficients we focus

on in this paper, extreme temperature impacts (corresponding to “killing degree days”) are

differently distributed across space, see Appendix Figure B7. However, the spatial distribution

of effects of a one degree increase in daily temperature (which is our focus in the application)

13While we do not use weights in the regressions, to present the results we weight all estimates by corn area

in the county. In Appendix B.2 we show un-weighted estimates for comparison.
14The visible state borders on the map are due to the inclusion of state-year fixed effects as controls in the

regression.
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is similar to our baseline specification, see Appendix Figure B6.

A key question we ask is: how should one interpret the heterogeneity in these estimated

impacts? Does it reflect true heterogeneity in βi or sample noise? As a first look at this

question, we estimate the same model on a shorter panel, from 1990 to 2005. We then plot a

kernel estimate of the density of the pβi’s estimated on this subsample, in dashed line in the left

panel of Figure 4. We see a density of impacts that is wider than in the full sample, with large

proportions of negative but also positive temperature impacts. While it may be that the last

period 1990-2005 experienced different temperature impacts compared to the full sample, it is

also possible that the difference between the two densities is mechanically due to the effect of

sample noise. In the next section, we review bias-correction methods that aim at reducing the

impact of the noise on fixed-effects estimates.

4 Bias-correction methods in fixed effects

4.1 Exact bias correction

A number of methods are available to either fully correct for bias in fixed-effects estimates, or

to at least partially correct for it. We first discuss exact bias-correction methods.

Consider the variance of fixed-effects estimates in model (8) without additional covariates.

The bias term in (12) depends on the variance-covariance matrix of errors εit. As an example,

in the case where εit |Xi1, ..., XiT � iidp0, σ2
εq we have

Bias � σ2
ε

�
1� 1

n



E

�� 1

n

ņ

i�1

�
Ţ

t�1

pXit �X iq2
��1

�� .

An unbiased and consistent estimator of the bias can then be constructed as

yBias � pσ2
ε

�
1� 1

n



1

n

ņ

i�1

�
Ţ

t�1

pXit �X iq2
��1

,

where pσ2
ε �

1

npT � 2q
ņ

i�1

Ţ

t�1

�
Yit � pβiXit � pαi

	2

is the degrees-of-freedom-corrected OLS estimate of the error variance.

A bias-corrected, exactly unbiased variance estimate is easily obtained as

yVarBC pβq � yVar�pβ	� yBias,
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which satisfies

E
�yVarBC pβq

�
� yVar pβq .

Moreover, under suitable regularity conditions (which in particular require sufficient within-unit

variation in Xit) we have, as n tends to infinity while T is kept fixed,

yVarBC pβq � yVar pβq � opp1q.

Note that, unlike yVarppβq, yVarBCpβq may be negative in a given sample.

Exact bias-correction strategies can be extended to a number of other quantities in linear

regression models such as (6). In short panels, Arellano and Bonhomme (2012) show how to

obtain consistent estimators of higher-order moments of effects, such as skewness and kurtosis,

under suitable conditions. They also show how to estimate the entire distribution of effects

consistently, by adapting nonparametric deconvolution techniques (e.g., Stefanski and Carroll,

1990, Li and Vuong, 1998, Bonhomme and Robin, 2010). Kline, Saggio, and Sølvsten (2020)

focus on quadratic forms in the parameters, and propose a leave-one-out estimator that is

unbiased under general forms of heterokedasticity.

A practical challenge for exact bias reduction methods is that they require correct modeling

of the dependence of errors. If the dependence is misspecified, for example if the εit’s are

assumed to be serially independent but are in fact serially correlated in the data, then the

resulting estimators are no longer consistent. Moreover, exact bias correction is generally not

available in nonlinear models, such as binary or multinomial choice models.

When the conditions for exact bias correction are not met, it is nevertheless often possible to

achieve approximate bias correction, which becomes increasingly accurate as the panel length

grows, and is expected to work well in panels of moderate length. We now describe several

approximate bias-correction methods.

4.2 Approximate bias correction: the large-T perspective

The approximate bias-correction approach is motivated from a time-series perspective. Fixed-

effects estimators such as pβi are constructed based on T individual observations. When T is

sufficiently large and serial dependence is not too strong, one can rely on large-T approximation

arguments justified by central limit theorems to approximate the distribution of pβi. This

perspective, which can be applied to general classes of models, including nonlinear and dynamic

models, has been developed in a large literature, see Hahn and Kuersteiner (2002), Arellano

(2003a), Hahn and Newey (2004), Arellano and Hahn (2007), and Fernández-Val and Weidner

(2018), among others.
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To illustrate the approach, consider a fixed-effects estimator pβi. As T tends to infinity, one

often can write pβi � βi �
1?
T
Zi � op

�
1?
T



, (13)

where Zi is normally distributed with zero mean. The expansion (13) can be justified by

appealing to a central limit theorem for serially dependent data. This requires that dependence

is not too strong.

As an example, pβi in model (8), which is equal to

pβi � βi �
°T

t�1

�
Xit �X i

�
εit°T

t�1

�
Xit �X i

�2 ,

can be written as (13) for Zi � N p0, Viq, where Vi is the long-run variance

Vi � plim
TÑ8

1
T

°T
t�1

°T
s�1 E rpXit � µiq pXis � µiq εitεiss!
1
T

°T
t�1 E

�pXit � µiq2
�)2 , (14)

for µi � plimTÑ8X i. The assumption that Vi is finite limits the amount of serial dependence

in εit.

In turn, an expansion of the form (13) typically implies that the bias of a fixed-effects

estimator of a distributional quantity (such as the variance of the βi’s) takes the form

Bias � B

T
� o

�
1

T



, (15)

where B is a constant.

A variety of methods have been developed to reduce bias based on expansions like (15). A

key insight is that, if one can construct an estimator pB that is consistent for B as T tends to

infinity, then subtracting
xB
T
from a fixed-effects estimator will deliver a bias-reduced estimator,

in the sense that the resulting estimator will have a lower bias of order op1{T q, instead of

Op1{T q.
To illustrate, in the case of model (8) without additional covariates, we have

E
�yVar�pβ	� � yVar pβq � 1

T

�
1� 1

n



E

�
1

n

ņ

i�1

Vi

�
� o

�
1

T



looooooooooooooooooooomooooooooooooooooooooon

Bias

.

Using a consistent estimator of Vi as T tends to infinity, which we denote as pVi (for example, a

Newey-West estimator), we can then construct the bias-reduced estimator

yVarBR pβq � yVar�pβ	� 1

T

�
1� 1

n



1

n

ņ

i�1

pVi,
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which is guaranteed to satisfy

E
�yVarBR pβq

�
� yVar pβq � o

�
1

T



. (16)

Exact and approximate bias-correction methods have both advantages and drawbacks. Com-

pared to yVarBC pβq, which is unbiased irrespective of n and T , yVarBR pβq is biased for fixed T .

However, its bias is of a smaller order in T compared to that of the original fixed-effects es-

timator, see (16). On the other hand, the approximate bias reduction property, in the sense

of (16), does not require correct specification of the serial dependence of εit, while exact bias

correction does.

4.3 Half-panel jackknife

Among the available methods for approximate bias correction, we now describe a simple ap-

proach based on the jackknife proposed by Dhaene and Jochmans (2015). Let pβpn,1:T {2q be

the n � 1 vector of fixed effects estimated on the first half of the panel, i.e., only using peri-

ods 1, ..., T {2 (taking the integer part if T is odd). Suppose in addition that observations are

stationary over time. Then, the same logic that led to (15) implies that

E
�yVar�pβpn,1:T {2q	� � yVar pβq � B

T {2 � o

�
1

T



.

Hence, the bias is approximately 2B{T , which is twice as large as the bias of yVar�pβ	 based on

the full sample.

This suggests constructing the half-panel jackknife estimator

yVarHPJ pβq � 2yVar�pβ	� 1

2

�yVar�pβpn,1:T {2q	�yVar�pβpn,T {2�1:T q
		

,

where pβpn,T {2�1:T q

i denote fixed-effects estimators based on the second half of the panel. Indeed,

we have

E
�yVarHPJ pβq

�
� 2E

�yVar�pβ	�� 1

2

�
E
�yVar�pβpn,1:T {2q	�� E

�yVar�pβpn,T {2�1:T q
	�	

� 2

�yVar pβq � B

T
� o

�
1

T




� 1

2

�
2yVar pβq � 2

B

T {2 � o

�
1

T




� yVar pβq � o

�
1

T



,

which implies that the bias of the half-panel jackknife estimator is of lower order compared

to that of the fixed-effects estimator. A practical advantage of the jackknife approach is that
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there is no need to estimate the constant B in (15). In addition to this ease of implementation,

half-panel jackknife is robust to the presence of serial correlation, in contrast with leave-one-out

jackknife (e.g., Hahn and Newey, 2004).

However, stationarity over time may be a restrictive assumption. For example, stationarity

may fail in the presence of time fixed-effects. Fernández-Val and Weidner (2016) propose

a modification of half-panel jackknife that handles the presence of time effects (though not

general forms of spatial nonstationarity). To describe their approach, let pβp1:n{2,T q denote the

pn{2q � 1 vector of fixed effects estimated using the first half of individual units, with a similar

notation for the other sub-sample. Then the modified half-panel jackknife estimator

yVarHPJ2 pβq � 3yVar�pβ	� 1

2

�yVar�pβpn,1:T {2q	�yVar�pβpn,T {2�1:T q
		

� 1

2

�yVar�pβp1:n{2,T q	�yVar�pβpn{2�1:n,T q
		

has reduced bias, even in the presence of time effects. Intuitively, time effects induce an ad-

ditional bias of order Op1{nq, which the split in the cross-sectional dimension helps correct

for.

There exist various alternatives to half-panel jackknife. Methods based on analytical cor-

rections (which aim to find an empirical counterpart pB to B in (15)) have been developed

for fixed-effects estimators, moment equations, and likelihood functions. Various bootstrap

and jackknife methods have been proposed. Arellano and Hahn (2007) provides a comprehen-

sive survey of those approaches. Hahn, Hughes, Kuersteiner, and Newey (2022) compare the

efficiency of various approximate bias-correction methods.

While we have used the variance of effects as an example to illustrate the methods through-

out this section, approximate bias correction can be applied to other quantities. For example,

Jochmans and Weidner (2024) consider the distribution function of effects

pFβpbq � 1

n

ņ

i�1

1 tβi ¤ bu .

They show that the distribution function of the fixed effects,

pF
pβpbq �

1

n

ņ

i�1

1
!pβi ¤ b

)
is biased for pFβpbq, with a bias of order Op1{T q under suitable conditions. They then develop

analytical and jackknife methods for approximate bias correction. In particular, they show that

the half-panel jackknife reduces bias (however, they do not formally study the validity of the
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modified half-panel jackknife that handles the presence of time effects). See Okui and Yanagi

(2020) for an analysis of bias correction methods for density functions.

The large N, T panel data literature provides inference methods for general functions of

the common parameters and individual effects. Under suitable conditions, the uncorrected and

bias-corrected fixed-effects estimators have the same asymptotic variance. A simple method to

provide valid standard errors is the cross-sectional bootstrap (Fernández-Val, Gao, Liao, and

Vella, 2022), where one draws n values with replacement from (debiased counterparts to) the

fixed-effects estimates pβi and report the standard deviation of the corresponding statistic, such

as the variance of the re-sampled pβi’s. Fernández-Val, Gao, Liao, and Vella (2022) show that

this cross-sectional bootstrap scheme provides valid standard errors, including in cases where

the analytical plug-in methods are invalid.15

4.4 Illustration

To bias-correct our empirical estimates, we apply the modified half-panel jackknife estimator

HPJ2 that handles the presence of time effects (Dhaene and Jochmans, 2015, Fernández-Val

and Weidner, 2016). Since the model includes state-year fixed effects, we implement the cross-

sectional splits within each state. We use 5 splits, and average over them. In the time-series

dimension we simply split the sample in half, only once. We apply the jackknife separately to

the mean of the effects, their variance, and their distribution function. The standard errors we

report are based on the cross-sectional bootstrap, clustered at the state level.

In Column (3) of Table 2 we see that the average effect is virtually unaffected by the bias

correction (�8.0 in both cases). However, the variance is greatly reduced by the bias correction.

The standard deviation decreases from 4.9 (uncorrected) to 3.4 (bias-corrected using the jack-

knife).16,17 We also report estimates of percentiles of the distribution of βi. Those are obtained

by inverting the jackknife estimate of the distribution function (Jochmans and Weidner, 2024).

15In their analysis, Fernández-Val, Gao, Liao, and Vella (2022) consider as target parameters quantities that

are averages or variances, say, of the population distribution of the βi’s. This differs from the parameters

pE rβs andyVar pβq that we have considered in our presentation. Defining the target parameter as a population

expectation or variance (as opposed to a sample mean or variance) results in more uncertainty, which the

cross-sectional bootstrap accounts for.
16In Table 2 we show the mean and variance estimates implied by the bias-corrected distribution. Bias-

correcting the mean directly gives a similar value (�8.2). However, bias-correcting the variance directly gives

an even lower dispersion, with a standard deviation of 2.5.
17We report the same standard error estimates in columns (2) and (3) of Table 2. This is justified by the

property that bias correction does not affect the asymptotic variance of the estimator in this setting.
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Figure 5: Jackknife results – marginal density
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Notes: density of marginal temperature effects across counties and years, weighted by corn area. The solid line

shows the density according to jackknife, while the dotted line shows the density according to fixed effects.

In practice, we find that the estimated distribution function is not monotone everywhere, so

we apply the rearrangement method of Chernozhukov, Fernández-Val, and Galichon (2010) to

enforce monotonicity. The estimates of the percentiles in Column (3) of Table 2 are consistent

with the finding that the jackknife tends to compress the distribution of effects. This is further

corroborated by Figure 5, where we report a kernel-smoothed estimate of the bias-corrected

density.18

5 Discrete heterogeneity: grouping methods

The noise in the fixed-effects estimates pβi reflects the fact that there is not enough data to

precisely estimate all βi’s. While the sample contains nT observations, only T of them are

informative about each βi. To reduce the impact of noise, a common approach is to impose

additional assumptions on the heterogeneity. Such strategies are commonly employed in high-

dimensional models. As an example, a sparse model assumes that all βi’s are equal to zero (or

to a common coefficient), except for a few of them that are non-zero (e.g., Tibshirani, 1996).

Another example assumes that the βi’s follow a Gaussian distribution, and we will review such

random-effects approach in Section 6.

In this section we describe another assumption about the βi’s, which has empirical appeal

18To assess whether these findings are affected by low variation in temperature over time for some counties, in

Appendix Figure B8 we report the results of a trimming exercise where we remove some share of counties that

exhibit the lowest variation. The estimates are quite stable as a function of the share of observations removed.
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Table 2: Distribution of marginal effects of temperature across counties and years

Homog. Heterog. Jackknife GFE RE

(1) (2) (3) (4) (5)

Percentile 10 -6.729 -14.655 -12.341 -12.387 -13.666

(0.894) (1.918) (1.918) (3.103) (1.723)

Percentile 25 -6.729 -10.620 -9.639 -8.219 -10.637

(0.894) (1.041) (1.041) (1.614) (1.079)

Percentile 50 -6.729 -7.834 -7.857 -8.219 -7.877

(0.894) (0.728) (0.728) (1.175) (0.763)

Percentile 75 -6.729 -4.781 -5.652 -4.930 -5.250

(0.894) (0.704) (0.704) (0.405) (0.742)

Percentile 90 -6.729 -2.636 -3.879 -1.311 -3.079

(0.894) (0.777) (0.777) (1.797) (0.783)

Mean -6.729 -8.024 -8.046 -7.698 -8.123

(0.894) (0.733) (0.733) (0.861) (0.798)

Variance 0.000 24.032 11.424 18.700 17.257

(5.248) (5.248) (4.991) (5.307)

Notes: distribution of marginal effects across counties and years, weighted by corn area. Column (1) corresponds

to a homogeneous β. Columns (2) to (5) correspond to heterogeneous βi: (2) is based on fixed-effects, (3) on

the jackknife, (4) on grouped fixed-effects (GFE) with K � 5, and (5) on correlated random-effects (RE) with a

prior mean that depends on temperature. GFE and RE methods are described in Sections 5 and 6, respectively.

Standard errors in parentheses are clustered at the state level.

for modeling heterogeneity. The idea is to limit the number of different values that βi can take.

While unrestricted βi’s can take up to n different values, a discrete heterogeneity assumption

sets the maximum number of distinct values to K, where K is typically small relative to n.

5.1 Model and estimator

Suppose that individual units are partitioned into K groups, ki P t1, ..., Ku, and that, within

group k, all βi’s are constant equal to β
k
. We consider the following grouped fixed-effects model

Yit � β
ki
Xit � αi � δt �W 1

itγ � εit. (17)
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When K � n, (17) simplifies to the fixed-effects model (6). However, taking K small relative

to n pools information across individual units. This can help reduce noise, and thus alleviate

the first three issues with fixed-effects estimation that we mentioned in Section 3.19

There are several available methods to estimate model (17). One strategy is to compute a

grouped fixed-effects estimator, by minimizing, for a given number of groups K, the objective

function
ņ

i�1

Ţ

t�1

�
Yit � β

ki
Xit � αi � δt �W 1

itγ
	2

(18)

with respect to the following parameters: the unit fixed-effects intercepts α1, ..., αn, the time

fixed-effects intercepts δ1, ..., δT , the covariates’ coefficients γ, the group-specific parameters

β
1
, ..., β

K
, and the unit-specific group-membership indicators k1, ..., kn. The group indicators

ki P t1, ..., Ku define a partition of all individual units. The minimum in (18) is taken over all

possible such partitions into K groups.

The grouped fixed effects (or GFE) estimator defined as the minimizer of (18) can be inter-

preted as a generalization of kmeans clustering, which is a widely used partitioning algorithm.

In fact, one could alternatively estimate the groups by applying kmeans to the fixed-effects pβi,

that is, by minimizing
ņ

i�1

�pβi � β
ki

	2

, (19)

with respect to the group-specific parameters β
1
, ..., β

K
and the unit-specific group-membership

indicators k1, ..., kn. An advantage of (18) compared to (19) is that the estimator remains well-

defined even if some of the pβi’s do not exist. In other words, by minimizing (18) one can

address the second issue with fixed-effects estimation, which is the non-existence of fixed-effects

estimates. Heterogeneous estimators based on (18) are sometimes referred to as “clusterwise

regression” estimators in computer science.

There is an extensive literature in statistics and computer science that proposes and studies

algorithms for kmeans clustering and clusterwise regression. A particularly simple approach is

based on Lloyd’s algorithm. The method consists in iterating between a grouping step and a

regression step, as follows:

� In the grouping step, given some values of the coefficients α, δ, γ, β, one minimizes (18)

with respect to k1, .., kn. The solution is

ki � argmin
k�1,...,K

Ţ

t�1

�
Yit � β

k
Xit � αi � δt �W 1

itγ
	2

, for all i � 1, ..., n.

19This is not yet addressing the fourth issue, since here we maintain the assumption that βi is time-invariant.

However, in Section 7 we will review grouped-factor models that allow for time-varying heterogeneity.
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� In the regression step, given k1, ..., kn one minimizes

ņ

i�1

Ţ

t�1

�
Yit � β

ki
Xit � αi � δt �W 1

itγ
	2

with respect to all parameters (except for the group indicators ki that are fixed) and

obtain α1, δ1, γ1, β1. This step is simply a linear regression, where some covariates are

interactions between Xit and group indicators. One then sets pα, δ, γ, βq � pα1, δ1, γ1, β1q,
and goes back to the previous step, iterating until the objective function does not change.

In practice, the objective function tends to have many local minima, and it is important

to start the algorithm from multiple parameter values. We will illustrate this approach in the

application. The choice of initialization has been studied in computer science, see for example

Arthur and Vassilvitskii (2007). Moreover, Lloyd’s algorithm is only one simple approach to

minimize (18). There exists a variety of alternatives, both approximate and exact, some of

which are reviewed in Bonhomme and Manresa (2015).

In addition to grouped fixed-effects estimation, other methods have been proposed to esti-

mate group-membership indicators and regression parameters in discrete heterogeneity models

such as (17). The Classifier Lasso (or CLasso) approach proposed by Su, Shi, and Phillips

(2016) is a penalized regression method based on minimizing

ņ

i�1

Ţ

t�1

pYit � βiXit � αi � δt �W 1
itγq2 � λ

ņ

i�1

K¹
k�1

���βi � β
k

��� (20)

with respect to the following parameters: the unit fixed-effects intercepts α1, ..., αn, the time

fixed-effects intercepts δ1, ..., δT , the covariates’ coefficients γ, the unit fixed-effects coefficients

β1, ..., βn, and the group-specific parameters β
1
, ..., β

K
.

In (20), λ ¡ 0 is a tuning parameter. Classifier Lasso exhibits a behavior that is reminiscent

of the Lasso. Indeed, the presence of the absolute value |βi � β
k
| in the penalty term tends

to produce a clustering of the βi’s around the group-specific values β
1
, ..., β

K
. This is similar

to the Lasso penalty, which tends to produce a clustering of estimates around zero. However,

unlike the Lasso objective, (20) is not convex, and it can have local minima. The authors derive

a formula for λ based on asymptotic approximations.

The literature on grouping methods is evolving fast. Recent approaches include Chetverikov

and Manresa (2022), Mugnier (2022), Yu, Gu, and Volgushev (2022), and Yu, Gu, and Volgu-

shev (2024), among others. These methods, and the Classifier Lasso, all share similar asymp-

totic guarantees, which we will review next.
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In practice, the number of groups K is an important input to grouping methods. Several

methods have been proposed to estimate K. One approach is based on information criteria.

Let pLpKq denote the value of the objective function in (18) at the estimated parameters, for a

given number of groups K. Su, Shi, and Phillips (2016) propose to minimize the Information

Criterion

log

�
1

nT
pLpKq



� ρnTK, (21)

where ρnT is a tuning parameter, which they recommend to set as ρnT � 2
3
pnT q� 1

2 . Bonhomme

and Manresa (2015) consider the Bayesian Information Criterion

1

nT
pLpKq � K

nT
lnpnT qpσ2, (22)

where pσ2 � 1
nT

°n
i�1

°T
t�1

�
Yit � pβiXit � pαi � pδt �X 1

itpγ	2

is based on the fixed-effects estimator

of model (6). Another approach to estimate K is through sequential testing. Lu and Su (2017)

propose an LM test statistic to test the null hypothesis K � k against K ¡ k, for k � 1, 2, ...

The estimator of K is then the first value of k for which the null hypothesis is not rejected.

5.2 Properties under grouped heterogeneity

There are two approaches to provide theoretical justifications for grouping methods. The first

and most common approach is to analyze the behavior of grouped heterogeneity estimates in a

data generating process where the heterogeneity is indeed grouped in the population. In this

approach, the DGP is assumed to satisfy model (17), for some true number of groups K and

true group-membership indicators k1, ..., kn. In particular, one assumes that there exists a true

number of groups K that does not depend on the sample size.

In a grouped data generating process, several papers have provided conditions for the groups

to be consistent as n and T tend to infinity. See Hahn and Moon (2010), Lin and Ng (2012),

Bonhomme and Manresa (2015), and Su, Shi, and Phillips (2016), among others. This implies

that the probability of correctly classifying all individual units tends to one as the sample size

tends to infinity. Formally, group consistency reads20

Pr
�pki � ki for all i � 1, ..., n

�
Ñ 1. (23)

Conditions for group consistency allow n to grow polynomially faster than T . For example,

Bonhomme and Manresa (2015) assume that n{T δ Ñ 0 for some δ ¡ 0. Since δ can be

20Since the groups are not observed, the definition of groups 1, 2, 3, ... is arbitrary. Indeed, one could alterna-

tively refer to group 1 as group 2, and to group 2 as group 1, without changing model (17). Group consistency

in (23) is thus understood to hold for an arbitrary labeling of the groups.
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arbitrarily large, this theory provides a rationale for using grouping estimators in panel data

where the time dimension is small relative to the cross-sectional dimension.

An implication of group consistency in (23) is that the asymptotic distribution of grouped

estimates of heterogeneous effects is not affected by the fact that the groups have been estimated.

Consider the estimator rβ
k
of β

k
based on the true groups ki. It follows from group consistency

that the grouped fixed-effects estimator of βi, which we have denoted as pβ
pki

(where pki are the

estimated groups), has the same asymptotic distribution as rβ
ki
. In particular, when all groups

have non-negligible size in the limit, pβ
pki

is
?
nT -consistent for βi. This should be contrasted

to the fixed-effects estimator pβi, which is only
?
T -consistent. This provides a concrete sense

in which grouping can reduce noise and improve the performance of heterogeneity estimates.

As a result of group consistency, inference on the parameters of the grouped fixed-effects

model (17) is very simple. One can proceed as if the groups ki were known to the researcher, and

simply replace ki by their estimates pki in formulas for standard errors and confidence intervals.

Moreover, under related conditions, the number of groups can be shown to be consistently

estimated using information criteria or sequential testing.

However, group consistency hinges on several possibly restrictive assumptions. Bonhomme

and Manresa (2015) emphasize three conditions. The first one is that the true groups need to

be sufficiently well separated. The theory assumes that the distance |β
k
� β

k1
|, for any groups

k � k1, is non-zero and fixed as the sample size tends to infinity. This may not capture well

the fact that, in a fixed sample, some groups may be close to each other, and hence hard to

distinguish. The second and third conditions require errors εit to be weakly dependent and

their distributions to have sufficiently thin tails, respectively.

There is relatively little work trying to provide valid inference methods when group consis-

tency does not hold. Recently, Armstrong, Weidner, and Zeleneev (2022) studied the related

problem of inference in interactive fixed-effects models in the presence of weak factors, and

provided bias-aware inference methods in such settings. Developing inference methods that

correctly account for the uncertainty in group assignments is an important avenue for future

work.21

21In their supplement, Bonhomme and Manresa (2015) used the bootstrap, clustered at the unit level, in an

attempt to account for the uncertainty in group estimation. In a recent contribution, Dzemski and Okui (2024)

proposed a method for confidence intervals for group-membership indicators.
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5.3 Properties under continuous heterogeneity

The second approach to analyze the properties of grouped heterogeneity estimators is to assume

a data generating process where heterogeneity is continuous. In this approach, the DGP is

assumed to satisfy (6), where one does not assume that the βi’s are grouped. This reflects the

view that groups provide an approximation to some possibly continuous heterogeneity.

In pioneering contributions in the early 1980s, David Pollard showed that, when hetero-

geneity βi is continuous, group estimates converge to some pseudo-true values as n tends to

infinity for T fixed (Pollard, 1981, Pollard, 1982). While Pollard considered the case of kmeans,

his results apply more generally to grouped fixed-effects estimates (Bonhomme and Manresa,

2015). However, these pseudo-true values differ from the true parameter values, and grouped

fixed-effects estimates are inconsistent as n tends to infinity if T is fixed.

Recently, Bonhomme, Lamadon, and Manresa (2022) showed that, in settings with con-

tinuous βi’s, parameter estimates remain consistent for their true values as n and T tend to

infinity jointly. However, a crucial difference when the βi’s are not discrete is that consistency

only holds as K tends to infinity together with the sample size. A too small number of groups

provides a poor approximation to the heterogeneity, which in turn affects consistency and con-

vergence rates. When heterogeneity is continuous, the groups are a regularization device, with

K being a tuning parameter. Moreover, the convergence rate of grouped fixed-effects estima-

tors depends crucially on the dimensionality of heterogeneity. From this perspective, the case

of model (6) appears favorable since heterogeneity βi is scalar. However, the performance of

grouping methods may worsen in models with multi-dimensional continuous heterogeneity.22

5.4 Illustration

We implement the grouped fixed-effects estimator in our illustration, for various numbers of

groups. For computation we use Lloyd’s algorithm with 3,000 starting values. In Appendix C

we describe how we initialize the algorithm. Based on the estimates for K groups, where K

ranges between 1 and 8, we compute the information criterion (21) proposed by Su, Shi, and

Phillips (2016). According to this criterion, the optimal number of groups is 5. Given this, we

22Cheng, Schorfheide, and Shao (2023) propose a method to allow for separate group indicators in the pa-

rameters of a regression model. For example, with Xit denoting temperature and Wit denoting precipitation,

one can specify

Yit � β
ki
Xit � γ

ℓi
Wit � αi � δt � εit,

where ki P t1, ...,Ku and ℓi P t1, ..., Lu. Here there are two numbers of groups K,L, and two group indicators

ki, ℓi. In their asymptotic analysis they consider DGPs with discrete heterogeneity.
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Figure 6: Grouped fixed-effects estimates

(a) Histograms (b) Spatial distribution (K � 5)

0.0

0.2

0.4

−30 −20 −10 0 10
Temperature effects

Groups

2

3

4

5

6

7

8

Temperature effects     −15 −10 −5 0

Notes: panel (a) shows histograms of marginal effects across counties and years, weighted by corn area, based

on grouped fixed-effects for several values of K, while the solid line shows the density of fixed-effects estimates.

Panel (b) shows the spatial distribution of marginal effects across counties based on grouped fixed-effects with

K � 5.

set K � 5 as a baseline. However, we report results based on varying numbers of groups in

Appendix Table B5 and Appendix Figure B9. The results are quite stable between K � 3 and

K � 8.

In Column (4) in Table 2 we report the mean, variance, and percentiles of the distribution

of temperature impacts according to grouped fixed-effects, for K � 5. The standard errors are

obtained by bootstrap, clustered at the state level, and conditional on the estimated group-

membership indicators. The point estimate of the mean is again similar to the uncorrected

fixed-effects average (�7.7). The dispersion of effects is lower than the one of fixed-effects

estimates, but larger than the jackknifed one, with a standard deviation of 4.3. Panel (a) of

Figure 6 shows that the grouped fixed-effects histograms, plotted for various numbers of groups,

exhibit less dispersion than the density of the fixed-effects estimates.

Grouped fixed-effects estimates can be used to document spatial heterogeneity. In panel (b)

of Figure 6 we report the grouped fixed-effects estimates pβ
pki

on a map of the US, for K � 5.

Under a model with discrete heterogeneity, and suitable assumptions as we have discussed,

these estimates are
?
nT -consistent, whereas the fixed-effects estimates are only

?
T -consistent.

This provides a rationale for reporting, and interpreting, grouped estimates such as the ones

shown in panel (b) of Figure 6 in applications.

Lastly, in Appendix Figure B10 we report the spatial distribution of the lower and upper
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bounds of a 95% confidence interval for βi (under the assumption that the βi’s are grouped).

To obtain these confidence intervals, we cluster errors at the state level, and condition on the

estimated group-membership indicators.

6 Modeling heterogeneity: random-effects methods

6.1 Random-effects model

Another approach to try to reduce the impact of the noise on heterogeneity estimates is to

model the distribution of heterogeneous parameters βi. This approach is increasingly used in

economics, in panel data but also in settings with a network structure such as in the estimation

of neighborhood effects or firm and worker effects (see Bonhomme and Denis, 2024 for a recent

survey). In this section, we thus treat the βi’s as random variables.

To illustrate this approach in our context, consider the fixed-effects estimates23

pβi � βi � vi, (24)

where by (13)
?
Tvi � Zi� opp1q, for Zi |Xi,Wi, βi � N p0, Viq. In the presentation, we assume

that Vi � V pXi,Wiq is a function of the covariates and that it is known to the researcher,

although in practice Vi needs to be estimated. Asymptotic normality of vi as T tends to infinity

holds under suitable conditions on time-series dependence. For the presentation we will assume

that normality holds exactly, and not only asymptotically, so

vi |Xi,Wi, βi � N
�
0,

Vi

T



. (25)

Note that by Assumption 3 all observations are independent. Cross-sectional independence is

a substantive assumption for the methods reviewed in this section.

Instead of viewing βi as a parameter to be estimated (the so-called “fixed-effects” approach),

suppose that it is drawn from some distribution G conditional on covariates (the “random-

effects” approach). That is, suppose that

βi |Xi,Wi � Gp� |Xi,Wiq. (26)

As an example, suppose that

βi |Xi,Wi � N
�
µ0 � µ11Hi, τ

2
�
, (27)

23In this section we maintain our focus on time-invariant βi’s. See Botosaru and Liu (2025) for a semi-

parametric approach to event study models with time-varying coefficients.
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for some parameters µ0, µ1, τ
2, where Hi � HpXi,Wiq is a known (vector-valued) function of

the covariates. This “correlated random-effects” specification allows the distribution of βi to

depend on Xi,Wi through a parametric model. We will follow this approach in the illustration

by conditioning on average temperature in the county.

6.2 Estimators and properties

By combining (24) and (27), we have

E
�pβi |Xi,Wi

�
� µ0 � µ11Hi, (28)

E
��pβi � µ0 � µ11Hi

	2

|Xi,Wi

�
� τ 2 � Vi

T
. (29)

This suggests to estimate pµ0, pµ1 by an OLS regression of pβi on Hi and a constant, and to

estimate pτ 2 � 1

n

ņ

i�1

�pβi � pµ0 � pµ11Hi

	2

� 1

nT

ņ

i�1

Vi. (30)

The term 1
nT

°n
i�1 Vi can be interpreted as an exact bias correction when estimating the condi-

tional variance τ 2 of the effects βi. The unconditional variance can then be estimated as

yVarRE pβq � yVar �pµ0 � pµ11Hi

�� pτ 2.
The estimators pµ0, pµ1, pτ 2, and yVarRE pβq are all consistent as n tends to infinity and T fixed

under standard regularity conditions, provided (27) holds. Note that implementing random-

effects requires an estimator of the long-run variance Vi, which is not needed for other methods

such as half-panel jackknife and grouping.

An attractive feature of the random-effects approach is the ability to compute posterior

quantities. Indeed, interpreting (27) as a prior for βi (conditional on Xi,Wi) in model (24)-

(25), we obtain the posterior distribution of βi given the data, which is

βi | pβi, Xi,Wi � N

��
τ 2

Vi

T
� τ 2

�pβi �
�

Vi

T
Vi

T
� τ 2

�
pµ0 � µ11Hiq , 1�

Vi

T

��1 � τ�2

�
, (31)

independent across i. In particular, the posterior mean of βi is

E
�
βi | pβi, Xi,Wi

�
�
�

τ 2

Vi

T
� τ 2

�pβi �
�

Vi

T
Vi

T
� τ 2

�
pµ0 � µ11Hiq . (32)

It is the best predictor of βi under quadratic loss in model (24)-(25)-(27).
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Let us introduce the shrinkage factor

ρi �
τ 2

Vi

T
� τ 2

,

which lies between 0 and 1. In (32), the fixed-effects estimate pβi is shrunk towards the prior

mean. The shrinkage is more aggressive when ρi is lower, which corresponds to a lower signal-

to-noise ratio.

Given estimates pµ0, pµ1, and pτ 2, one can construct the empirical-Bayes posterior means

pβPM

i �
� pτ 2

Vi

T
� pτ 2

�pβi �
�

Vi

T
Vi

T
� pτ 2

��pµ0 � pµ11Hi

�
. (33)

Shrunk estimates (33) have attractive properties as square loss minimizers, even in cases where

(27) is misspecified (see the James-Stein theorem). Intuitively, shrinkage helps because using

information from other individuals i1 � i can improve prediction for individual i (Efron, 2012,

Koenker and Gu, in preparation).

Often, researchers are interested in quantities averaged over individual units, such as the

dispersion of effects or their distribution. Given the random-effects model (24)-(25)-(27), one

can report posterior mean estimates of those quantities. For example, the posterior mean of

the sample variance of effects is

E
�yVar pβq | pβ1, ...,

pβn, X1, ..., Xn,W1, ...,Wn

�
� yVar pmq �

�
1� 1

n



1

n

ņ

i�1

s2i , (34)

where mi and s2i are the posterior means and variances of βi in (31). In turn, the posterior

mean of the distribution of effects is

E
� pFβpbq | pβ1, ...,

pβn, X1, ..., Xn,W1, ...,Wn

�
� 1

n

ņ

i�1

Φ

�
b�mi

si



, (35)

where Φ denotes the standard normal distribution function.

Posterior estimates such as (34) and (35) have attractive robustness properties as T tends

to infinity, as highlighted by Arellano and Bonhomme (2009) who refer to those as “Bayesian

fixed-effects” estimates. As T tends to infinity,

E
�yVar pβq | pβ1, ...,

pβn, X1, ..., Xn,W1, ...,Wn

�
� yVar pβq � opp1q,

E
� pFβpbq | pβ1, ...,

pβn, X1, ..., Xn,W1, ...,Wn

�
� pFβpbq � opp1q,

even when the parametric model for βi (e.g., (27)) is incorrectly specified (see also Hahn, Kuer-

steiner, and Cho, 2004). That is, consistency holds even when βi are not normally distributed,
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or they are normal but their variance depends on Xi,Wi, for example. Moreover, Bonhomme

and Weidner (2022) show that posterior estimates such as (34) and (35) also enjoy robustness

properties for T fixed as n tends to infinity, even though misspecified random-effects estimators

are generally inconsistent for fixed T . Inference based on these estimators is straightforward

under correct specification of the distribution of βi.

Extension. The normal specification for βi in (27) can be generalized. A fully nonparamet-

ric approach, independent of the conditioning variables Xi,Wi, was introduced by Kiefer and

Wolfowitz (1956). Nonparametric maximum likelihood estimation is the subject of a large lit-

erature in statistics, see for example Koenker and Mizera (2014) and Gu and Koenker (2017).

Flexible parametric methods have also been proposed, notably Efron (2016)’s penalized log-

spline estimator. In applications of random-effects methods, it is often important to allow for

dependence on conditioning variables. Recently, Chen (2023) proposed an approach based on

a semi-parametric location-scale model.

6.3 Illustration

We estimate random-effects specifications based on (24)-(25), for various priors. Our main

specification is in the spirit of (27): βi is assumed to be normally distributed, with a mean

that depends linearly on average temperature in the county, and a conditional variance that is

constant. In Column (5) of Table 2 we report posterior means of the average effect, the variance

of effects, and the distribution of effects, which we invert to obtain percentiles. The standard

errors are obtained by bootstrap, clustered at the state level. Again, the point estimate of the

mean is very similar to the other specifications (�8.1). The dispersion is slightly lower than

the one under grouped fixed-effects, and lower than the variance of fixed-effects estimates, with

a standard deviation of 4.2. In panel (a) of Figure 7 we report, in solid line, a smoothed kernel

estimate of the density implied by the random-effects specification. We see relatively small

differences with the estimated density of fixed effects in this case, except for somewhat thinner

left and right tails. Lastly, in panel (b) of Figure 7 we plot estimates of posterior means of βi

on a map of the US.

We perform several robustness checks. In Appendix Table B6 we report estimates based

on different priors: a normal prior fully independent of covariates, and two additional priors

that allow the conditional variance of βi, in addition to its mean, to depend on average tem-

perature in the county. The results are quite similar across all these specifications. Another

important practical question when implementing random-effects is how to estimate the variance

33



Figure 7: Random-effects estimates

(a) Marginal density (b) Spatial distribution of posterior means
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Notes: results weighted by corn area. Panel (a) presents the posterior mean of the distribution of marginal

effects, kernel-smoothed to obtain a density (in solid), whereas the fixed-effects density is shown in dashed.

Panel (b) shows a map of the posterior means. The model assumes a normal prior whose mean depends on

average temperature in the county.

of fixed-effects estimates, Vi. In our baseline, we use a within-county formula based on i.i.d.

homoskedastic standard observations, but we have conducted several robustness checks using

Newey-West estimators with various number of lags and found similar random-effects estimates

in those cases.

7 Variation over time: factor methods

7.1 Low-rank models

Allowing for effects to vary over time is important in many applications. While a fully un-

restricted βit is not estimable, panel data, together with some modeling choices, offer the

possibility to estimate models with time-varying, heterogeneous responses.

To illustrate, consider a simple departure from model (6), which allows for a specific form

of variation over time while maintaining essentially the same structure. Suppose that

βit � βi � µt (36)
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is additive across units and time periods, and that

Yit � pβi � µtqXit � αi � δt �W 1
itγ � εit

� βiXit � αi � δt � µtXit �W 1
itγ � εit,

which is identical to (6) except for the fact that the control covariates now include interactions

between X’s and time indicators. Lu and Su (2023) study this approach, and Keane and Neal

(2020) rely on the same model to study the effect of temperature on yields.

A key feature of (36) is that βit depends on two sources of heterogeneity. The first one, βi,

captures unit heterogeneity. The second one, µt, captures time heterogeneity. This implies that

the n�T matrix B with elements βit in (7) can be written as a sum of a matrix with constant

rows and another matrix with constant columns. In particular, under (36) B has rank 2. Such

low-rank constraints are useful ways of disciplining the nature of heterogeneity across units and

over time.

More generally, a factor model imposes a low-rank assumption on B. A general represen-

tation of a rank-R matrix is

βit �
Ŗ

r�1

βi,rµr,t. (37)

Here, βi,1, ..., βi,R are R sources of unit heterogeneity, while µ1,t, ..., µR,t represent R sources of

time heterogeneity. In matrix form, B can be represented as a product

B � βµ1,

where β is an n�R matrix with elements βi,r, and µ is a T �R matrix with elements µr,t.

Note that the usual parallel trends specification in two-way fixed-effects,

αit � αi � δt

takes the same form as (36). The specification for αit can thus be generalized in exactly the

same way to factor models with additional sources of possibly non-additive heterogeneity, as

in (37). Hence, factor models also offer the possibility to relax the parallel trends assumption

in two-way fixed-effects and other panel data regression settings. In fact, factor methods were

initially applied to models with constant β and non-additive αit, as we review next.

7.2 Factor methods

A well-studied model with a factor structure is the interactive fixed-effects model (Bai, 2009,

Pesaran, 2006),

Yit � βXit � α1iδt � εit, (38)
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where we do not impose parallel trends and abstract from additional covariates for simplicity.

Here αi and δt are R � 1 vectors, where R is the number of factors. Importantly, this model

has a constant β so it does not allow for heterogeneity across units or over time.

In model (38), Bai (2009) provides conditions under which the parameters β, α1, ..., αn and

δ1, ..., δT are all consistently estimated as n and T tend to infinity by minimizing24

ņ

i�1

Ţ

t�1

pYit � βXit � αi
1δtq2 . (39)

The resulting interactive fixed-effects estimator can be interpreted as principal component anal-

ysis (PCA) with covariates, and it is related to synthetic control (Abadie, Diamond, and Hain-

mueller, 2010, Gobillon and Magnac, 2016), and to matrix completion methods for panel data

(Athey, Bayati, Doudchenko, Imbens, and Khosravi, 2021). However, the multiplicative struc-

ture αi
1δt in (39) leads to a non-convex objective function, which complicates implementation.

An alternative approach is to enforce the low-rank constraint through a penalty, in the spirit

of matrix completion methods. To proceed, let A denote an n � T matrix with elements αit.

Let }A}� denote the sum of the singular values of A.25 This quantity is also called the nuclear

norm of A. Moon and Weidner (2018) propose to minimize

ņ

i�1

Ţ

t�1

pYit � βXit � αitq2 � λ}A}�, (40)

with respect to β and the αit’s, where the penalty parameter λ ¡ 0, suitably chosen, amounts

to restricting the rank of A. Indeed, the nuclear norm penalty can be understood as a matrix

counterpart to the ℓ1 norm that is used in Lasso estimation (Cai, Candès, and Shen, 2010,

Hastie, Tibshirani, and Wainwright, 2015). Unlike (39), the objective in (40) is convex in A

and β.

The use of nuclear norm penalization permits to extend factor methods to models where

both αit and βit are heterogeneous, hence allowing for effects heterogeneity across units and

over time. A recent contribution by Chernozhukov, Hansen, Liao, and Zhu (2019) proposed to

extend (40) to also allow for coefficient heterogeneity.

7.3 Grouped-factor methods

However, while factor models address the fourth issue with fixed effects, by allowing for time

variation, they are vulnerable to the other issues that we pointed out in Subsection 3.3. In-

24Identification of α1, ..., αn and δ1, ..., δT requires choosing a suitable normalization, referred to as a choice

of a “rotation”.
25The singular values of A are the square roots of the eigenvalues of A1A.
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deed, compared to a standard fixed-effects approach with time-invariant coefficients βi, a factor

specification such as (37) adds several (possibly many) parameters to estimate. However, as

we have seen in the first part of the paper, it is often desirable to reduce the number of fixed

effects in practice because of sample noise.

To make progress, one can impose additional assumptions on βit beyond the factor structure.

In a grouped-factor model, we assume that

βit � β
t
pkiq, (41)

where ki P t1, ..., Ku are group-membership indicators, and β
t
p1q, ..., β

t
pKq are K group-

specific paths of heterogeneity. Bonhomme and Manresa (2015) proposed this idea to model

the intercept in a regression with constant coefficients. Here we advocate this approach to

model the coefficients themselves. Related approaches in the literature include Okui and Wang

(2021), Lumsdaine, Okui, and Wang (2023), and Wang, Phillips, and Su (2024). All these

approaches can be viewed as hybrid, since the intercept includes additive or interactive fixed

effects, and the slope is modeled as group-specific and time-varying. Such hybrid approaches

appear particularly promising for empirical applications.

The grouped-factor model (41) allows for effects heterogeneity across units and over time.

In fact, this is a special case of a factor model with K factors, since we can write

βtpkiq �
Ķ

r�1

1tki � ruβ
t
prq,

which corresponds to (37) for βi,r � 1tki � ru and µr,t � β
t
prq. This case is a rather special

one, however, since βi,r are either 0 or 1. The grouped-factor structure thus reduces the number

of parameters relative to a general factor model. This can help with all four issues of fixed-

effects, since the model allows for time variation while grouping units to reduce noise. In panel

event studies, grouped-factor models allow researchers to relax parallel trends and estimate

heterogeneous effects of a treatment (Shin, 2022).

Computation of grouped-factor estimators can be performed using Lloyd’s algorithm, suit-

ably modified in order to allow for the time-varying structure in (41). The asymptotic properties

of the method as n, T tend to infinity are similar to the time-invariant case that we reviewed

in Section 5 (see Bonhomme and Manresa, 2015). In particular, under analogous conditions to

the ones we discussed before, group consistency will hold, see (23).
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Figure 8: Fixed-effects estimates by subperiod

(a) Marginal densities
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Notes: panel (a) shows the density of marginal effects of temperature across counties and years by subperiod,

weighted by corn area (in colored non-solid lines), whereas the solid black line shows the overall density based

on time-invariant fixed-effects estimation. Panels (b) to (d) show the spatial distribution of marginal effects by

subperiod.

7.4 Illustration

To explore heterogeneity in temperature effects over time, we split the observation period into

three equal-sized subperiods: 1950–1968, 1969–1987, and 1988–2005. Denoting subperiods as

pptq P t1, 2, 3u, we then estimate a model with subperiod-specific fixed-effects, based on

Yit � βipptqXit � αipptq � δt �W 1
itγ � εit. (42)

In the top panel of Figure 8 we show a kernel estimator of the density of the fixed-effects

estimates pβip, for all three subperiods. In the bottom panel we plot the estimates on a map of

the US, again separately by subperiod. In Appendix Table B7, columns (4) to (6), we report

estimates of means, variances, and percentiles.

The fixed-effects estimates pβip suggest that temperature impacts have become more negative

on average over time. The mean effects is �5.4 in the first subperiod, and increases to �9.6
and �9.3 in the subsequent subperiods. We observe a noticeable increase in dispersion, with
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Figure 9: Grouped-factor estimates by subperiod
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Notes: panels (a) to (c) show the histograms of marginal effects of temperature across counties and years by

subperiod, weighted by corn area, estimated by grouped-factor. Panels (d) to (f) show the spatial distribution of

marginal effects by subperiod for K � 4.

standard deviations equal to 5.2, 7.9, and 9.4 in the three subperiods. We also notice that the

dispersion within each subperiod is larger than that of the fixed-effects estimated on the full

period.

However, as we pointed out when discussing Figure 4, a concern is that the dispersion in

fixed-effects estimates partly reflects the impact of noise, which is magnified here given that

the fixed effects are estimated based on shorter subpanels.

We next report estimates based on the grouped-factor model

Yit � βkpiqpptqXit � αipptq � δt �W 1
itγ � εit. (43)

In (43) we assume that group membership ki is constant over the full period, and specify

β
t
pkq � βkpptq as piecewise-constant on the three subperiods. This choice is motivated by

parsimony, since it limits the number of time effects to be estimated compared to a specification

allowing for unrestricted group-specific time effects. In Appendix Table B8 we report estimates

of means, variances, and percentiles. We show grouped-factor estimates based onK � 4 groups,
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as well as robustness checks for other numbers of groups.

We find that average effects by subperiod are close to the estimates based on fixed-effects,

although they are not exactly the same. Average (negative) impacts increase from �3.9 in

the first subperiod to �8.0 and �10.6 in the subsequent subperiods. The estimates also show

a large increase in dispersion over time. However, the dispersion is reduced compared to the

fixed-effects estimates. Dispersion is low in the first subperiod, with a standard deviation of 0.6,

and it increases substantially to 3.5 and 4.9 in the subsequent ones. Figure 9 shows histograms

of heterogeneous effects, and maps indicating their spatial distribution over time. Overall, esti-

mates from the grouped-factor model (43) suggest increasingly negative temperature impacts,

which become more dispersed across counties over time. We report uncertainty measures for

these estimates in Appendix Table B9 and Appendix Figure B11.

8 Conclusion

Better data and methods now provide applied researchers with opportunities to account for rich

heterogeneity in levels and responses. A natural approach is fixed-effects estimation of unre-

stricted heterogeneous coefficients. However, fixed-effects estimates are often too noisy. While

bias-correction methods offer improvements, it is often useful to impose additional assumptions

through some form of regularization. Groups, random-effects, and factor and grouped-factor

methods all impose some regularization relative to models with unrestricted time-invariant or

time-varying parameters. In our application, these methods shed light on the heterogeneity in

temperature impacts across space and over time.

While we have focused on linear panel data models with coefficient heterogeneity as an

extension of the two-way fixed-effects methods that are popular in applied work, the methods

reviewed here can be used in other settings. The literature on nonlinear panel data models is

now extensive, and methods of the type reviewed here can be applied to discrete choice models

and other nonlinear models (e.g., Arellano and Hahn, 2007, Arellano and Bonhomme, 2011).

Linear regressions on network data are now increasingly used in applications, as in the model

with worker and firm fixed-effects proposed by Abowd, Kramarz, and Margolis (1999). The

structure is related to the panel data models we have focused on, and methods to improve over

fixed-effects are now available (e.g., Kline, Saggio, and Sølvsten, 2020, Bonhomme, Holzheu,

Lamadon, Manresa, Mogstad, and Setzler, 2023).
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Deschênes, O., and M. Greenstone (2007): “The economic impacts of climate change: evidence

from agricultural output and random fluctuations in weather,” American economic review, 97(1),

354–385.

Dhaene, G., and K. Jochmans (2015): “Split-panel jackknife estimation of fixed-effect models,”

The Review of Economic Studies, 82(3), 991–1030.

Dzemski, A., and R. Okui (2024): “Confidence set for group membership,” Quantitative Economics,

15(2), 245–277.

Efron, B. (2012): Large-scale inference: empirical Bayes methods for estimation, testing, and pre-

diction, vol. 1. Cambridge University Press.

43



(2016): “Empirical Bayes deconvolution estimates,” Biometrika, 103(1), 1–20.

Fernández-Val, I., W. Y. Gao, Y. Liao, and F. Vella (2022): “Dynamic heterogeneous dis-

tribution regression panel models, with an application to labor income processes,” arXiv preprint

arXiv:2202.04154.

Fernández-Val, I., and J. Lee (2013): “Panel data models with nonadditive unobserved hetero-

geneity: Estimation and inference,” Quantitative Economics, 4(3), 453–481.

Fernández-Val, I., and M. Weidner (2016): “Individual and time effects in nonlinear panel

models with large N, T,” Journal of Econometrics, 192(1), 291–312.

(2018): “Fixed effects estimation of large-T panel data models,” Annual Review of Economics,

10(1), 109–138.

Gobillon, L., and T. Magnac (2016): “Regional policy evaluation: Interactive fixed effects and

synthetic controls,” Review of Economics and Statistics, 98(3), 535–551.

Goodman-Bacon, A. (2021): “Difference-in-differences with variation in treatment timing,” Journal

of econometrics, 225(2), 254–277.

Graham, B. S., and J. L. Powell (2012): “Identification and estimation of average partial effects

in “irregular” correlated random coefficient panel data models,” Econometrica, 80(5), 2105–2152.

Gu, J., and R. Koenker (2017): “Unobserved heterogeneity in income dynamics: An empirical

Bayes perspective,” Journal of Business & Economic Statistics, 35(1), 1–16.

Hahn, J., D. W. Hughes, G. Kuersteiner, and W. K. Newey (2022): “Efficient Bias Correction

for Cross-section and Panel Data,” arXiv preprint arXiv:2207.09943.

Hahn, J., and G. Kuersteiner (2002): “Asymptotically unbiased inference for a dynamic panel

model with fixed effects when both n and T are large,” Econometrica, 70(4), 1639–1657.

Hahn, J., G. Kuersteiner, and M. H. Cho (2004): “Asymptotic distribution of misspecified

random effects estimator for a dynamic panel model with fixed effects when both n and T are

large,” Economics Letters, 84(1), 117–125.

Hahn, J., and H. R. Moon (2010): “Panel data models with finite number of multiple equilibria,”

Econometric Theory, 26(3), 863–881.

Hahn, J., and W. Newey (2004): “Jackknife and analytical bias reduction for nonlinear panel

models,” Econometrica, 72(4), 1295–1319.

44



Hastie, T., R. Tibshirani, and M. Wainwright (2015): “Statistical learning with sparsity,”

Monographs on statistics and applied probability, 143(143), 8.

Hsiao, C., and M. H. Pesaran (2008): “Random coefficient models,” in The econometrics of panel

data: Fundamentals and recent developments in theory and practice, pp. 185–213. Springer.

Jochmans, K., and M. Weidner (2024): “Inference on a distribution from noisy draws,” Econo-

metric Theory, 40(1), 60–97.

Keane, M., and T. Neal (2020): “Climate change and US agriculture: Accounting for multidimen-

sional slope heterogeneity in panel data,” Quantitative Economics, 11(4), 1391–1429.

Kiefer, J., and J. Wolfowitz (1956): “Consistency of the maximum likelihood estimator in the

presence of infinitely many incidental parameters,” The Annals of Mathematical Statistics, pp. 887–

906.

Kline, P., R. Saggio, and M. Sølvsten (2020): “Leave-out estimation of variance components,”

Econometrica, 88(5), 1859–1898.

Koenker, R., and J. Gu (in preparation): Empirical Bayes: Some Tools, Rules and Duals. Econo-

metric Society Monographs.

Koenker, R., and I. Mizera (2014): “Convex optimization, shape constraints, compound decisions,

and empirical Bayes rules,” Journal of the American Statistical Association, 109(506), 674–685.

Kuersteiner, G. M., and I. R. Prucha (2013): “Limit theory for panel data models with cross

sectional dependence and sequential exogeneity,” Journal of Econometrics, 174(2), 107–126.

(2020): “Dynamic spatial panel models: Networks, common shocks, and sequential exogene-

ity,” Econometrica, 88(5), 2109–2146.

Li, T., and Q. Vuong (1998): “Nonparametric estimation of the measurement error model using

multiple indicators,” Journal of Multivariate Analysis, 65(2), 139–165.

Lin, C.-C., and S. Ng (2012): “Estimation of panel data models with parameter heterogeneity when

group membership is unknown,” Journal of Econometric Methods, 1(1), 42–55.

Lu, X., and L. Su (2017): “Determining the number of groups in latent panel structures with an

application to income and democracy,” Quantitative Economics, 8(3), 729–760.

(2023): “Uniform inference in linear panel data models with two-dimensional heterogeneity,”

Journal of Econometrics, 235(2), 694–719.

45



Lumsdaine, R. L., R. Okui, and W. Wang (2023): “Estimation of panel group structure models

with structural breaks in group memberships and coefficients,” Journal of Econometrics, 233(1),

45–65.

Miller, S., K. Chua, J. Coggins, and H. Mohtadi (2021): “Heat waves, climate change, and

economic output,” Journal of the European Economic Association, 19(5), 2658–2694.

Moon, H. R., and M. Weidner (2018): “Nuclear norm regularized estimation of panel regression

models,” arXiv preprint arXiv:1810.10987.

Mugnier, M. (2022): “A simple and computationally trivial estimator for grouped fixed effects

models,” Discussion paper, Working paper.

Okui, R., and W. Wang (2021): “Heterogeneous structural breaks in panel data models,” Journal

of Econometrics, 220(2), 447–473.

Okui, R., and T. Yanagi (2020): “Kernel estimation for panel data with heterogeneous dynamics,”

The Econometrics Journal, 23(1), 156–175.

Pesaran, M. H. (2006): “Estimation and inference in large heterogeneous panels with a multifactor

error structure,” Econometrica, 74(4), 967–1012.

Pesaran, M. H., and R. Smith (1995): “Estimating long-run relationships from dynamic hetero-

geneous panels,” Journal of econometrics, 68(1), 79–113.

Pollard, D. (1981): “Strong consistency of k-means clustering,” The annals of statistics, pp. 135–

140.

(1982): “A central limit theorem for k-means clustering,” The Annals of Probability, 10(4),

919–926.

Rambachan, A., and J. Roth (2023): “A more credible approach to parallel trends,” Review of

Economic Studies, 90(5), 2555–2591.

Roth, J., P. H. Sant’Anna, A. Bilinski, and J. Poe (2023): “What’s trending in difference-in-

differences? A synthesis of the recent econometrics literature,” Journal of Econometrics, 235(2),

2218–2244.

Schlenker, W., and M. J. Roberts (2009): “Nonlinear temperature effects indicate severe dam-

ages to US crop yields under climate change,” Proceedings of the National Academy of sciences,

106(37), 15594–15598.

46



Shin, M. (2022): “Finitely Heterogeneous Treatment Effect in Event-study,” arXiv preprint

arXiv:2204.02346.

Stefanski, L. A., and R. J. Carroll (1990): “Deconvolving kernel density estimators,” Statistics,

21(2), 169–184.

Su, L., Z. Shi, and P. C. Phillips (2016): “Identifying latent structures in panel data,” Econo-

metrica, 84(6), 2215–2264.

Sun, L., and S. Abraham (2021): “Estimating dynamic treatment effects in event studies with

heterogeneous treatment effects,” Journal of econometrics, 225(2), 175–199.

Tibshirani, R. (1996): “Regression shrinkage and selection via the lasso,” Journal of the Royal

Statistical Society Series B: Statistical Methodology, 58(1), 267–288.

Wang, Y., P. C. Phillips, and L. Su (2024): “Panel data models with time-varying latent group

structures,” Journal of Econometrics, 240(1), 105685.

Wooldridge, J. M. (2005): “Fixed-effects and related estimators for correlated random-coefficient

and treatment-effect panel data models,” Review of economics and statistics, 87(2), 385–390.

Yu, L., J. Gu, and S. Volgushev (2022): “Group structure estimation for panel data–a general

approach,” arXiv preprint arXiv:2201.01793.

(2024): “Spectral clustering with variance information for group structure estimation in panel

data,” Journal of Econometrics, 241(1), 105709.

47



ONLINE APPENDIX

A Appendix: data

Table A1: Descriptive statistics

Obs P10 P25 Median Mean P75 P90 St. Dev.

Temperature (C) 107,004 16.2 17.9 20.2 20.2 22.4 24.2 3.0

Precipitation (mm) 107,004 2.3 2.8 3.3 3.4 3.9 4.5 0.8

Corn yields (bu/acre) 107,004 31.7 47.0 72.0 75.4 99.4 125.0 35.4

Corn area (1,000s acres) 107,004 0.8 2.6 12.0 32.6 45.7 97.4 45.2

Notes: un-weighted statistics.

Figure A1: Descriptive figures
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Notes: un-weighted means across counties. Yields are measured in bushels per acre. Temperature is measured

in average daily degree Celsius above zero degrees Celsius during the growing season.
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Figure A2: Maps of averages per county
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Notes: un-weighted means (1950–2005).
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B Appendix: robustness

B.1 Alternative standard errors

Table B2: Yield regressions - Driscoll and Kraay standard errors

2 Lags 3 Lags

(1) (2) (3) (4) (5) (6) (7) (8)

Temperature -3.902 -3.021 -4.108 -6.729 -3.902 -3.021 -4.108 -6.729

(0.382) (4.010) (1.487) (0.954) (0.373) (3.938) (1.480) (0.972)

Precipitation 5.801 7.685 3.074 2.010 5.801 7.685 3.074 2.010

(1.932) (2.298) (0.739) (0.380) (2.019) (2.425) (0.735) (0.391)

Observations 107,004 107,004 107,004 107,004 107,004 107,004 107,004 107,004

County FE No Yes Yes Yes No Yes Yes Yes

Year FE No No Yes Yes No No Yes Yes

State-year FE No No No Yes No No No Yes

Notes: un-weighted regressions. Driscoll and Kraay standard errors with small-sample correction.

50



B.2 Results without weights

Figure B3: Fixed-effects results - Density of marginal effects un-weighted
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Notes: density of marginal effects across counties and years estimated via fixed-effects. The solid line shows the

un-weighted results, while the dashed line shows the results weighted by corn area.
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B.3 Regression of log yields

Figure B4: Fixed-effects results in a regression of log yields

(a) Marginal density (b) Spatial distribution
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Notes: panel (a) shows the density of marginal effects estimated via fixed-effects in a regression for yields in

levels (dotted line) versus in logs (solid line). Panel (b) plots marginal effects per county from a regression in

logs. For the regression in logs, errors are assumed to be normally distributed and marginal effects are estimated

as pβi � expp
{logpyitqq � expppσ2

ε{2q.
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B.4 Growing and killing degree days

The literature has studied nonlinear effects of temperature by distinguishing between growing

degree days (gdd), measured as degree-days between 0 and 29C, and killing degree days (kdd),

measured as degree-days above 29C, both measured during the growing season (see Keane and

Neal, 2020).1 As with our main temperature variable, we re-scale these variables by the number

of days in the growing season.

We estimate the following specification,

yit � αi � βigddit � γikddit � χprecrit � λspiqt � ϵit, (B1)

where precrit denote precipitation, and λspiqt include state-year fixed-effects. Note that equation

(B1) does not correspond to a piece-wise linear specification based on our baseline measure

of temperature, because the daily distribution of temperature matters as well. That is, two

counties may have the same overall degree days, but with different values for growing and killing

degree days.

Table B3 shows descriptive statistics for our baseline temperature measure (DD0�), and the

measures of growing degree days (GDD0,29) and killing degree days (KDD29�).

Using (B1), along with our baseline fixed-effects specification, we estimate the expected

change in yields of a daily increase in temperature of 1 degree Celsius. Table B4 shows the

distribution of effects associated with an increase in 1 degree Celsius daily. In column (1) we

report our main estimates based on a model with time-invariant βi. In column (2) we report

estimates implied by the nonlinear model (B1). We see that the nonlinear model implies a

smaller average effect, and a somewhat higher dispersion of effects. In Figure B5 we plot the

density of effects. In Figure B6 we plot the effects on a map of the US. We see that the spatial

distribution is quite similar in the two models.

However, the effects of an increase in growing degree days or killing degree days are very

different, and differently distributed across space. To illustrate this, in Figure B7 we plot the

county-specific coefficients of growing and killing degree days in (B1), respectively.

1Keane and Neal (2020) estimate a specification in logs and consider the growing season to be between May

1st to September 30th, while we focus on a specification in levels and, following Deschênes and Greenstone

(2007) and Burke and Emerick (2016), consider the growing season to be between April 1st to September 30th.
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Table B3: Various measures of temperature

Baseline temperature Counterfactual temperature

DD0� GDD0,29 KDD29� DD0� GDD0,29 KDD29�

Percentile 10 16.469 16.404 0.039 17.469 17.333 0.078

Percentile 25 17.426 17.324 0.079 18.426 18.241 0.141

Percentile 50 18.624 18.453 0.154 19.624 19.349 0.247

Percentile 75 20.020 19.755 0.288 21.020 20.621 0.426

Percentile 90 21.835 21.409 0.484 22.835 22.222 0.676

Mean 18.926 18.708 0.219 19.926 19.589 0.326

Variance 4.757 4.043 0.044 4.757 3.836 0.075

Notes: distribution across counties and years, weighted by corn area. Variables are re-scaled by 1/183, where

183 are the number of days in the growing season. DD0� corresponds to our baseline temperature measure used

in the main text.

Table B4: Distribution of effects of increasing daily temperature by 1C

Baseline model Nonlinear model

(1) (2)

Percentile 10 -14.655 -14.561

Percentile 25 -10.620 -10.060

Percentile 50 -7.834 -5.936

Percentile 75 -4.781 -2.494

Percentile 90 -2.636 0.348

Mean -8.024 -6.494

Variance 24.032 35.673

Notes: distribution of effects of a daily increase in temperature by 1C across counties and years, weighted by

corn area. For our baseline model in column (1), the effects correspond to the coefficients βi. For the nonlinear

specification in column (2), see (B1), the effects correspond to the difference of the counterfactual and baseline

temperatures, gddit and kddit, weighted by the corresponding coefficients.
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Figure B5: Density of effects of increasing daily temperature by 1C
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Notes: density across counties and years, weighted by corn area. The solid line shows the nonlinear results from

specification (B1), while the dashed line presents the baseline results.

Figure B6: Maps of effects of increasing daily temperature by 1C

(a) Baseline model

Temperature effects     −15 −10 −5 0

(b) Nonlinear model
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Notes: for our baseline model in panel (a), the effects correspond to the coefficients βi. For the nonlinear

specification in panel (b), see (B1), the effects correspond to the difference of the counterfactual and baseline

temperatures, gddit and kddit, weighted by the corresponding coefficients.
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Figure B7: Maps of coefficients in the nonlinear specification

(a) Growing degree days

Coefficient    −5 0 5 10

(b) Killing degree days

Coefficient (in 10s)    −16−12 −8 −4

Notes: coefficients of gddit (left panel) and kddit (right panel) in the nonlinear specification, see (B1).
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B.5 Sensitivity to trimming in Jackknife

Figure B8: Sensitivity to trimming of Jackknife results

(a) Mean (b) Variance
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Notes: dashed lines show results from fixed-effects estimates, solid lines show results from jackknife estimates of

the distribution function, and the dotted lines show results from the jackknife formula applied to the mean and

variance directly.
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B.6 Grouped fixed-effects estimates

Table B5: Grouped fixed-effects - Distribution of marginal effects

K � 2 K � 3 K � 4 K � 5 K � 6 K � 7 K � 8

Percentile 10 -9.831 -12.622 -14.148 -12.387 -12.413 -13.908 -12.290

Percentile 25 -9.831 -7.752 -9.017 -8.219 -8.785 -10.247 -9.191

Percentile 50 -9.831 -7.752 -9.017 -8.219 -8.785 -7.775 -6.768

Percentile 75 -4.635 -3.457 -5.507 -4.930 -5.992 -5.081 -4.210

Percentile 90 -4.635 -3.457 -1.725 -1.311 -3.107 -2.309 -4.210

Mean -7.468 -7.560 -7.756 -7.698 -7.888 -7.650 -8.026

Variance 6.694 10.549 12.454 18.700 17.997 15.097 17.974

Notes: distribution of marginal effects across counties and years, weighted by corn area.
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Figure B9: Grouped fixed-effects - Maps of marginal effects per county

K � 2 K � 3

Temperature effects     −15 −10 −5 0 Temperature effects     −15 −10 −5 0

K � 4 K � 6

Temperature effects     −15 −10 −5 0 Temperature effects     −15 −10 −5 0

K � 7 K � 8

Temperature effects     −15 −10 −5 0 Temperature effects     −15 −10 −5 0
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B.7 Random-effects estimates

Table B6: Random-effects estimates – robustness

Uncorrelated RE Correlated RE Posterior means

(1) (2) (3) (4) (5)

Percentile 10 -13.612 -13.666 -13.559 -13.492 -13.298

Percentile 25 -10.610 -10.637 -10.476 -10.517 -10.098

Percentile 50 -7.850 -7.877 -7.756 -7.823 -7.882

Percentile 75 -5.250 -5.250 -5.330 -5.277 -5.471

Percentile 90 -3.025 -3.079 -3.334 -3.106 -3.837

Mean -8.076 -8.123 -8.135 -8.082 -8.123

Variance 17.080 17.257 17.734 17.930 13.438

Notes: distribution of marginal effects across counties and years, weighted by corn area. All results are based

on a normal prior. Column (1) presents the uncorrelated random-effects results. Columns (2) to (4) present

correlated random-effects results under different assumptions. In column (2), the prior mean is correlated with

temperature. In columns (3) and (4) the prior variance is also correlated with temperature; in column (3) via

an exponential specification and in column (4) via a discrete specification with 3 bins. Column (5) presents the

distribution of the posterior means corresponding to the prior assumed in column (2).
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B.8 Variation over time

Table B7: Distribution of marginal effects – fixed-effects-per-period estimates

Baseline fixed effects Fixed effects per period

Period 1 Period 2 Period 3 Period 1 Period 2 Period 3

(1) (2) (3) (4) (5) (6)

Percentile 10 -14.537 -14.537 -14.801 -12.440 -21.922 -20.278

Percentile 25 -10.616 -10.460 -10.763 -8.158 -13.803 -14.678

Percentile 50 -7.834 -7.738 -7.854 -5.076 -7.772 -8.601

Percentile 75 -4.776 -4.841 -4.841 -2.171 -3.964 -3.216

Percentile 90 -2.547 -2.649 -2.636 0.905 -1.269 1.733

Mean -7.998 -8.008 -8.064 -5.366 -9.594 -9.307

Variance 23.695 23.843 24.527 26.564 61.917 87.662

Notes: statistics are weighted using corn area. In this table, we drop 113 observations corresponding to counties

with one observation in one of the periods.

Table B8: Distribution of marginal effects - grouped-factor estimates

K � 2 K � 3 K � 4

Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 Period 1 Period 2 Period 3

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Percentile 10 -4.285 -9.178 -14.513 -4.306 -9.445 -17.400 -4.292 -11.773 -17.277

Percentile 25 -4.285 -9.178 -14.513 -4.306 -9.445 -17.400 -4.292 -10.627 -12.650

Percentile 50 -4.285 -9.178 -14.513 -4.200 -8.496 -9.907 -4.253 -10.627 -12.650

Percentile 75 -3.258 -4.943 -5.655 -2.818 -3.686 -3.843 -3.935 -4.941 -7.839

Percentile 90 -3.258 -4.943 -5.655 -2.818 -3.686 -3.843 -2.522 -3.100 -3.539

Mean -3.830 -7.267 -10.464 -3.882 -7.568 -10.073 -3.878 -8.013 -10.577

Variance 0.260 4.441 19.469 0.409 6.111 25.099 0.388 12.462 23.537

Notes: statistics are weighted using corn area.
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B.9 Inference in grouped methods

Table B9: Distributions of marginal effects with standard errors

GFE Grouped-factor estimates

Period 1 Period 2 Period 3

(1) (2) (3) (4)

Percentile 10 -12.387 -4.292 -11.773 -17.277

(3.103) (0.823) (1.259) (1.929)

Percentile 25 -8.219 -4.292 -10.627 -12.650

(1.614) (0.850) (1.037) (1.216)

Percentile 50 -8.219 -4.253 -10.627 -12.650

(1.175) (0.802) (2.68) (2.089)

Percentile 75 -4.930 -3.935 -4.941 -7.839

(0.405) (0.834) (0.929) (1.219)

Percentile 90 -1.311 -2.522 -3.100 -3.539

(1.797) (1.062) (1.232) (2.039)

Mean -7.698 -3.878 -8.013 -10.577

(0.861) (0.823) (1.092) (1.039)

Variance 18.700 0.388 12.462 23.537

(4.991) (0.094) (1.123) (2.413)

Notes: statistics are weighted using corn area. GFE estimates correspond to 5 groups, grouped-factor estimates

to 4 groups. Standard errors are clustered at the state level, based on 1,000 bootstrap replications, conditional

on the group-membership indicators. In each bootstrap replication, states are sampled proportionally to their

number of observations.
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Figure B10: Maps of uncertainty in grouped fixed-effects estimates

(a) Lower bound (b) Upper bound

Temperature effects     −20−15−10 −5 0 Temperature effects     −20−15−10 −5 0

Notes: spatial distribution of bounds of marginal effects across counties, based on GFE with K � 5. Panel (a)

shows the lower bound, while panel (b) shows the upper bound, both of a 95% confidence interval per county,

where we cluster errors at the state level and condition on the estimated group-membership indicators.
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Figure B11: Maps of uncertainty in grouped-factor estimates

(a) Period 1 - lower bounds (b) Period 1 - upper bounds

Temperature effects     −20−15−10 −5 0 Temperature effects     −20−15−10 −5 0

(c) Period 2 - lower bounds (d) Period 2 - upper bounds

Temperature effects     −20−15−10 −5 0 Temperature effects     −20−15−10 −5 0

(e) Period 3 - lower bounds (f) Period 3 - upper bounds

Temperature effects     −20−15−10 −5 0 Temperature effects     −20−15−10 −5 0

Notes: spatial distribution of bounds of marginal effects across counties per period, based on grouped-factor

estimates with K � 4. The left column shows the lower bounds while the right column shows the upper bounds,

both of a 95% confidence interval per county-period, where we cluster errors at the state level and condition on

the estimated group-membership indicators.
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C Implementation

In this appendix we describe how we implemented the various estimation methods.

C.1 Fixed-effects

We run fixed-effects regressions in R using the package fixest. For the short-panel results

displayed in Figure 4, we further restrict the sample to years from 1990 to 2005 and counties

with at least 10 observations in those years. We compute standard errors by bootstrapping

the estimates pβi, i � 1, ..., n, where the bootstrap scheme is clustered at the state level (1000

replications).

C.2 Jackknife

We initially applied the half-panel jackknife approach of Dhaene and Jochmans (2015) to esti-

mate the mean, variance, and distribution function of βi. However, the estimated distributions

of βi in these two samples are quite different, suggesting miss-specification, possibly due to the

lack of stationarity given the presence of state-year fixed-effects. This motivated us to apply

instead the bias-correction approach proposed by Fernández-Val and Weidner (2016). For the

cross-section, we randomly split counties within each state into two (weighted) halves, 5 times,

and average across them. For the panel dimension, we split the panel in half.

We apply this approximate bias-correction formula to estimate the distribution of βi, that

is, to estimate pFβpbq for a vector of b values.2 However, this results in an estimated function

that is not monotone and not always bounded between 0 and 1. We address the first issue by

rearrangement (see Chernozhukov, Fernández-Val, and Galichon, 2010),3 and we then truncate

the values to the unit interval. With this estimated distribution function, we simulate data to

generate the density shown in Figure 5 and the results in column (3) of Table 2.

Note that applying the bias-correction approach directly to quantiles gives different esti-

mates than estimating the quantiles from the bias-corrected distribution. Similarly, by applying

the correction to the mean and the variance we obtain different point estimates than the mean

and variance implied by the bias-corrected distribution. In the case of the mean, both values

are similar, -8.15 and -8.05 respectively, while in the case of the variance the discrepancy is

2The fixed-effects estimates pβi range between -38.7 and 14.9. We define a vector b of length 10,001 equally-

spaced between -45 and 45. In each subsample, we estimate the empirical distribution function at each value of

b, weighted by corn area.
3We use the function stepfun from the R package quantreg.
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larger, with values of 6.2 and 11.4 respectively. This pattern also holds when we trim counties

with the lowest variability in temperature, see Figure B8. Lastly, standard errors are obtained

using the same approach as for fixed effects.

C.3 Grouped fixed-effects

To estimate grouped fixed-effects, given a number of groups K, we apply Lloyd’s algorithm to

de-meaned outcomes and covariates (which is equivalent to estimating αi in (18)), and estimate

k1, ..., kn, δ, γ, β. We use multiple starting values δ, γ, β to initialize the algorithm. As a first

starting value we use the fixed-effects estimates, group pβi into K groups and take the average

value within each group for β. For the subsequent starting values, we take draws from a normal

distribution centered at the first starting value, and with a diagonal covariance matrix. For

the variance of δ and γ, we take the squared standard error of each coefficient estimated from

fixed-effects, which are clustered at the state level, multiplied by 10. For each β
k
, we take the

variance of the fixed-effects estimates across counties.

In our implementation, we notice that choosing a variance for the heterogeneous parameters

that is too large may worsen the outcome of the algorithm. If the β
k
’s take implausible values,

in the first step of the first iteration all units are assigned to one group, and therefore the other

β
k
’s are not estimated in the second step of that first iteration. This implies that in the next

iteration, the residuals can only be estimated for one group, all units are assigned to that group

(which is the same group as in the previous iteration), and therefore the coefficients are not

updated and the algorithm stops. One way to avoid this problem is to have reasonable, not too

large starting values for the β’s.

The estimates we present are based on 3,000 starting values, 10,000 iterations for each one of

them, and a tolerance level for the change in the objective function between iterations of 1e�7.

We estimate grouped fixed-effects for values of K from 2 to 8. Column (4) in Table 2 presents

the results for K � 5, which corresponds to the number of groups chosen by the information

criterion proposed by Su, Shi, and Phillips (2016), while Table B5 presents the results for other

values of K.4 Lastly, to obtain standard errors we use the bootstrap, clustered at the state

level and conditional on the estimated group-membership indicators (1000 replications).

4As a check for the computation, we found it useful to compare the distribution of βi estimates obtained from

the best 10 starting values, corresponding to those that give the 10 minimum values of the objective function.

We found stable estimates for all K ¤ 6, but more variability for K � 7, 8, suggesting that these estimates may

be less reliable.
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C.4 Random-effects

To estimate the variance Vi of fixed-effects estimates, we use the squared standard errors ofpβi under several assumptions: i.i.d. homoskedastic, heteroskedastic, Newey-West with one lag,

and clustered at the county level. We have found that the random-effects estimates are similar

across all the specifications. We report the results assuming i.i.d. homoskedastic errors.

We entertain several specifications for the priors on βi. First, we assume each βi is an

independent draw from the same distribution N pµ, σ2q, i.e. we assume independent random-

effects. Second, we assume βi are i.i.d. normal with a mean that depends linearly on the average

temperature of county i. In further specifications, we allow for the variance to also depend on

temperature, using two different specifications: an exponential model, and a discrete model with

3 bins. In the discrete case, we group counties in 3 groups according to average temperature.

To obtain standard errors we use the bootstrap clustered at the state level (1000 replications).

C.5 Factors and grouped factors

We implement two versions with time-varying coefficients αit and βit, allowing them to be

period-specific for 3 subperiods, 1950–1968, 1969–1987, and 1988–2005. In the first version, we

allow the coefficients βit to be unrestricted within period across counties, while in the second

one we assume that counties are grouped, but their effects may vary by period. In both cases,

we allow the intercepts to be fully heterogeneous across counties and within periods, αipptq.

Note that, when allowing temperature effects to be county-specific but varying across periods,

we loose 113 observations corresponding to counties-periods that have only one observation.

For the grouped-factor version, we assume groups are fixed across periods. The imple-

mentation is similar to the time-invariant case, except that we de-meaned observations at the

county-period level (instead of de-meaning at the county level), and that the number of param-

eters to estimate increases.5 Table B8 describes the results for K � 2, 3, 4. Lastly, to obtain

standard errors for grouped-factor estimates, we use the bootstrap clustered at the state level

and conditional on the estimated group-membership indicators (1000 replications).

5We also allow for the coefficients in γ not to be identified, by modifying the code such that the coefficients

are set to zero in case of multicollinearity. This technical modification only matters in intermediate steps of

Lloyd’s algorithm.
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