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1 Introduction

The population is aging rapidly, putting considerable strain on public budgets. The

number of older adults out of the labor force who will need to be supported by each worker

is projected to increase by around 40% between 2018 and 2050. Therefore, promoting em-

ployment at older ages has garnered large interest.1 The success of policies promoting the

employment of older adults depends on our correct understanding of the determinants of

working decisions of this group, for whom health is an important factor.

For older adults, health deteriorates naturally with aging. Yet, little is known about the

heterogeneity in health dynamics of older adults and how this heterogeneity affects their

working decisions. Using data from the Health and Retirement Study (HRS), this paper

addresses this question.

I start by showing evidence that health dynamics are indeed heterogeneous among older

adults. That is, while some individuals see their health slowly deteriorating with age, other

individuals see their health deteriorating more rapidly. This heterogeneity helps explain why

as the population ages the variance of health increases, a pattern observed in the data but

mostly ignored by traditional models of health.

As these heterogeneous dynamics happen at older ages, individuals may not know their

own dynamics before hand. Furthermore, what matters for their decisions is their beliefs

about their own health dynamics. Hence, I next study uncertainty in health dynamics, by

assuming individuals are Bayesian learners and update their beliefs as they see their health

changing with age. To pin down the parameters of the initial beliefs, namely bias and

uncertainty, I leverage data on subjective survival expectations. Future survival depends

on future health, and hence, on health dynamics; therefore, beliefs about survival speak to

beliefs about health dynamics. In particular, I show that the covariance between changes in

health and changes in survival rates is the key moment for identifying uncertainty in beliefs.

Using the Simulated Method of Moments, I find individuals are indeed uncertain, updat-

ing their beliefs over time, and they are negatively biased, that is, on average, they believe

their health will deteriorate faster than the average rate in the population.

I study the link between health beliefs and working decisions of older adults, focusing on

the extensive margin. I estimate reduced-form equations of working decisions, as a function

of those beliefs, parametrically by probit and non-parametrically by neural networks. In this

last case, to deal with the fact that some of the inputs are unobserved by the econometri-

cian (mainly, the individual-level heterogeneity in initial beliefs), I implement an iterative

1 See statistics from OECD (2019). In 2015, the OECD adopted an agenda promoting employment at older
ages, to protect living standards and public finances (OECD (2015)).
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approach in the spirit of EM algorithms (Dempster, Laird, and Rubin (1977)).

I show beliefs matter for working decisions, and that expecting health to deteriorate more

rapidly is associated with lower probabilities of working. Furthermore, for individuals in their

50s who are not working, there is a positive interaction between beliefs and health. This

interaction suggests that adjustment costs of finding a job are important, as an improvement

in health that is expected to be short-lived has lower effects than one that is expected to be

long-lived. The flexibility of the data-driven estimation method implies this result is not a

consequence of any structure imposed to the model, and it suggests that structural models

studying labor decisions of older adults should consider such costs.

I use my flexible estimated model to implement an impulse-response approach, and to

simulate the impact of eliminating the initial bias in beliefs in working decisions. The results

show that eliminating the initial bias increases participation by 2 percentage points, a large

effect that lasts beyond traditional retirement ages.

In the context of heterogeneous and uncertain health dynamics, a health shock has two

effects on working decisions: it affects working decisions by changing health status, and it

affects working decisions by changing beliefs about health dynamics. I decompose the effect

of a health shock into these two channels, and find that nearly all the effect goes through

affecting health status. This result comes from the signal-to-noise ratio of health being low,

and it implies health by itself is not enough to resolve the uncertainty and correct the bias

in beliefs.

To summarize my main findings, I document four facts. First, individuals are uncertain

about their own health profiles; second, they have biased initial beliefs; third, health changes

are not enough to resolve uncertainty; and fourth, beliefs matter for working decisions. A

natural question that follows is: Can we provide additional information to individuals in

order to correct their beliefs and affect their working decisions?

In the last part of the paper, I look at this question in the context of an information

experiment available in the HRS. Starting in 2006, the HRS collects and analyzes blood

samples of their interviewees and informs them about their blood-glucose and cholesterol

results. Although the implementation in the HRS was not designed as an information exper-

iment, in order to save costs the blood sample is collected for a random half of the sample

each wave, providing us with exogenous variation. A reduced-form analysis in the spirit of

difference-in-differences2 shows small and insignificant effects of this additional information

on survival expectations and working decisions. A modified learning model, that includes

the biomarker results as additional signals, tells us why: the magnitude of this blood-based

signal is too small.

2 As discussed in section 6, the design needs to control also for changes in the interview mode.
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Relation to the literature. This paper is related to three strands of the literature.

First, it is related to the literature studying health dynamics, a literature that consistently

finds persistence and heterogeneity in health, both among the general population (Halliday

(2008), Hernández-Quevedo, Jones, and Rice (2008), Contoyannis, Jones, and Rice (2004))

and among older adults (Heiss, Börsch-Supan, Hurd, and Wise (2009), Heiss (2011), Heiss,

Venti, and Wise (2014), Lange and McKee (2011)). However, most of this literature only

allows for heterogeneity in health-levels. An exception is Halliday (2008), who also allows for

heterogeneity in health changes with age, but finds only weak evidence of this heterogeneity.

However, he focuses on a much younger population, whereas I focus on older individuals for

whom health changes with age are prevalent.

Second, this paper is related to the literature on empirical learning, specifically, to the

literature studying individuals’ learning of own unobserved heterogeneity, for example, re-

garding abilities (Stinebrickner and Stinebrickner (2014), Arcidiacono, Aucejo, Maurel, and

Ransom (2016)), productivity (Arcidiacono, Aucejo, Maurel, and Ransom (2016)) and in-

come profiles (Guvenen (2007), Guvenen and Smith (2014)). The paper is most closely

related to Guvenen and Smith (2014), who study an income process with heterogeneous

levels and heterogeneous growth rates. The main difference is that I use subjective expecta-

tions, as opposed to the outcome variable, to identify the parameters of the learning model,

and therefore my results are robust to misspecification of the relation between beliefs and

outcomes. Additionally, this paper relates to a more recent literature on the provision of

information and its effects on beliefs (see, e.g., Delavande and Kohler (2015), Wiswall and

Zafar (2014), Bates (2020)).

Finally, the paper is related to the literature on health and other outcomes of older

adults. Particularly, the paper is related to the literature studying the effects of health

on work and retirement choices (Siddiqui (1997),McClellan (1998), Bound, Schoenbaum,

Stinebrickner, and Waidmann (1999), French (2005), Disney, Emmerson, and Wakefield

(2006), Zucchelli, Jones, Rice, and Harris (2010), Maurer, Klein, and Vella (2011)) and plans

(Dwyer and Mitchell (1999), McGarry (2004)). Although this literature considers future

health as uncertain, it assumes a known stochastic process for health. On the contrary, this

paper allows for a stochastic health process that is not fully known, introducing the role of

health beliefs as an additional determinant of those decisions.

Outline. The paper proceeds as follows. Section 2 describes the data. Section 3 provides

evidence of heterogeneity in health dynamics, and Section 4 provides evidence of uncertainty.

Section 5 presents the main results for working decisions as a function of beliefs. Section 6

analyzes the information experiment available in the HRS. Finally, Section 7 concludes.
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2 Data

I use data from waves 4 to 12 of the Health and Retirement Study (2014) (HRS),3 a US

longitudinal survey representative of individuals 50 years and older. The survey includes

questions about health, survival expectations, and labor participation, among others.

In surveys, health is usually measured by self-assessed health, an ordinal variable taking

five values from very poor to excellent. This variable has been shown to correlate with sev-

eral outcomes; however, its limited range makes it not ideal to study health dynamics with

age. Instead, I use a battery of health-related measures included in the HRS to construct,

via factor analysis, a summary health variable that I use throughout the paper.4 The mea-

sures include self-assessed health, but also, number of chronic conditions and difficulties in

activities of daily living, among others. These measures reflect the health concept that is

relevant for the working decisions of older adults, related to how individuals perceive their

health in relation to their everyday activities. Appendix B presents descriptive statistics on

these health-related measures and provides details on the estimation of the summary health

variable hit. Larger values of hit represent better health, and an increase of one unit in hit

corresponds to having one less chronic condition.

The HRS also asks about subjective survival expectations in variable plive10it. Specifi-

cally, the question asks What is the percentage chance you will live to be (80, 85, 90, 95 or

100) or more? The reference age is a function of the individual’s age and the wave of the

survey, and it is usually around 10 to 15 years into the future.5

I study the extensive margin of labor-participation decisions of older adults, and define

a binary variable pit as 1 for working individuals.

The overall sample consists of 156,976 observations from 31,210 individuals 50 years

and older, interviewed in person6 in some wave between waves 4 and 12. Table 1 presents

descriptive statistics on the main variables.7

3 The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging (grant number
NIA U01AG009740) and is conducted by the University of Michigan. For most of the analysis, I use the
RAND HRS Longitudinal File (2014), which is an easy-to-use dataset based on the HRS core data. This
file was developed at RAND with funding from the National Institute on Aging and the Social Security
Administration.

4 This approach of using several measures to construct a summary variable is not unique to this paper; see,
for example, Heiss, Venti, and Wise (2014), Lange and McKee (2011), and Blundell, Britton, Dias, and
French (2017)

5 The HRS also includes another question on survival expectations to the age of 75, only asked of individuals
under 65 years old. I use this variable to check the fit of the beliefs model in Section 4.

6 I exclude proxy interviews because these interviews do no ask questions about survival expectations.
7 For different analyses in the paper, I restrict the sample further as needed; see Appendix A for an overview
of these samples.
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Table 1: Summary statistics of main variables

Observations Mean SD Min Max
Age 156,976 67.44 10.35 50 109
Health 148,866 5.19 0.67 2.94 6.15
Survival expectations 125,658 0.47 0.32 0 1
Working decisions 156,582 0.37 0.48 0 1

Notes: plive10 is re scaled so it takes values between 0 and 1.

3 Heterogeneous health dynamics

The first innovation introduced in this paper is to consider individual heterogeneity in

the dynamics of health of older adults, in particular, in how health changes with age.

To motivate this heterogeneity, Figure 1 shows the mean and variance of health hit by

age. The figure shows that as people age their average health decreases while its variance

increases. This pattern of decreasing mean and increasing variance is robust to sample

composition and also holds for most of the individual measures. The pattern in these graphs

suggests a process with heterogeneous slopes with age.

Figure 1: Mean and variance of health by age

(a) Mean (b) Variance
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Notes: Results from a balanced sample of 433 individuals observed at 50 years with at least 9 consecutive

waves. The bands represent 95% confidence intervals.

Let i denotes an individual and t denotes his age. I focus on individuals 50 years and

older and define t as 0 for age 50.8 I assume the following health process,

hit = ρhit−1 + αi + δi · t+ ϵit.

8 Given the two years between waves, throughout this paper, I consider age as measured in two-year bins.

5



The parameter ρ ∈ (0, 1) captures persistence in health, αi captures heterogeneous levels

in health, δi captures heterogeneous changes in health with age, and ϵit represents health

shocks. That is, health is a dynamic process that, as people get older, naturally deteriorates

in a heterogeneous way across individuals. Both the persistence of health and its hetero-

geneity in levels are well-recognized elements of health in the literature, both among the

general population (see, e.g., Hernández-Quevedo, Jones, and Rice (2008)) and among older

individuals (see, e.g., Heiss, Venti, and Wise (2014)). The first novel element in this paper

is to allow for heterogeneous slopes of health with age, δi. As larger values of hit represent

better health and health decreases with age, δi < 0. I assume the health process is exogenous

and focus on changes in health due to aging.

Health is an important determinant for survival, especially for older adults, with individ-

uals surviving to older ages having better health to begin with than individuals that don’t

survive that long. Hence, ignoring survival when studying health of older adults leads to

bias (see e.g. Heiss, Venti, and Wise (2014)). I assume the survival process is given by

Sit = 1{γhit−1 + θ0 + θ1 · t+ θ′2xi + ηit ≥ 0}Sit−1,

where xi is a vector of time-invariant demographic characteristics that includes gender, race,

hispanic ethnicity, and education. ηit is a random shock, which I assume independent to the

health shock ϵis. The parameter γ captures the dependence of survival on health.

I estimate a system of equations for health hit and survival Sit, assuming health levels

αi and health slopes δi are jointly normally distributed, with a mean that varies with de-

mographic characteristics. Hence, the overall model is a random coefficients model, which I

estimate by maximum likelihood; see Appendix C for the details.

Table 2 presents the main results. The table shows that health decreases with age and

has a relatively low persistence. In terms of the individual heterogeneity, the table shows two

main results. First, there is heterogeneity in both the intercepts and the slopes of the health

process, with positive and significant variances. Second, these two sources of heterogeneity

are uncorrelated, which implies knowing αi does not provide additional information on δi.

The coefficient for health in the survival equation is positive and significant, implying that

survival is more likely for healthier individuals. The full set of results are reported in Table

C1. It shows that individuals with low levels of education have worse health, health dete-

riorates faster for non-white individuals, and probabilities of survival are higher for women

and Hispanic individuals.

By allowing for heterogeneous slopes of health with age, the model does indeed predict

an increasing variance with age. To see this, Figure 2 repeats the exercise for a sample of
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Table 2: MLE results on health and survival

Symbol Coefficient Pvalue

Persistence ρ 0.223 0.000
Mean of αi µα 0.955 0.000
Mean of δi µδ -0.057 0.018
SD of αi σα 0.235 0.000
SD of δi σδ 0.043 0.000
Corr(αi, δi) ϕ -0.033 0.714
SD of health shocks σϵ 0.266 0.000

Survival dependence on health γ 0.583 0.001

Controls Yes
N alive observations 8,901
N dead observations 112
N individuals 1,671
-Log likelihood 3,027.6

Notes: Main results of estimating the health and survival processes. Details and full set of results are given

Appendix C.

individuals observed from 66 years old and plots the predicted variance of health with age

for two cases: allowing for heterogeneous slopes across individuals (left panel) and assuming

instead homogeneous slopes across individuals (right panel). The figure shows that by ig-

noring slope heterogeneity, we predict a rather constant variance of health, contrary to what

is observed in the data.9

I include several robustness checks in Appendix C.2. First, I estimate a version of the

model with heteroskedastic error ϵit, allowing its variance to depend on age. The results

show an increasing variance of health shocks does not explain away the heterogeneity in

slopes δi. Second, I estimate a version of the model adding the unobserved heterogeneity

(αi, δi) to the survival equation. The results show αi and δi are not (jointly) significant; that

is, I find no direct effect of heterogeneity in survival, once we control for health. This lack of

significance has an important implication for the beliefs model in the next section: it means

survival does not contain additional information about δi, beyond the information already

contained in health.10 Finally, I estimate a similar model using self-assessed health instead

of the summary health variable hit. The results show the presence of heterogeneous slopes

9 In an additional exercise, I observe that allowing for heterogeneous slopes but ignoring survival leads to
an overestimation of the variance of health with age, as the prediction includes the left tail of health
distribution that has lower probability of survival.

10 If this were not the case and survival contained additional information about δi, the learning model defined
in Section 4 would not be valid, as it does not include survival as a signal.
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Figure 2: Variance of health in models with and without slope heterogeneity

(a) Heterogeneous slopes (b) Homogeneous slopes
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Notes: The sample consists of 26,950 correlative observations from 7,301 individuals observed since they

were 66 years old. Over the span of the following eight waves, 996 of them died. The figure plots data from

354 individuals with health in all 9 waves. The solid lines plot the health data and the dotted lines plot the

predicted values of health in each model.

with age is robust to using only this measure.

4 Uncertain health dynamics and beliefs

The second innovation of this paper is to allow for individuals to be uncertain about their

health dynamics. In this section, I study how much individuals know about their own health

dynamics, by using data on subjective survival expectations. Given that future survival

depends on future health, survival expectations depend on expectations about future health,

and therefore, on beliefs about health dynamics.

Survival expectations have been shown to have predictive power for survival (Hurd, Mc-

Fadden, and Merrill (2001), Hurd and McGarry (1995)) and to be consistently updated with

new health information (Hurd and McGarry (2002), Smith, Taylor, and Sloan (2001)). Fur-

thermore, survival expectations are correlated with several outcomes for older individuals.

4.1 Belief about health dynamics

I assume individuals know αi but not δi and try to learn it given their observed health

history.11 Furthermore, I assume individuals are rational Bayesian learners with prior beliefs

11 Given that health deteriorates in old age, I assume 50-year-old individuals do not know δi, which has not
affected them before. This assumption is consistent with results from Halliday (2008), who studies health
dynamics with discrete heterogeneity, using the Panel Study of Income Dynamics. He studies younger
individuals, ages 22 to 60, and finds no heterogeneous slopes with age. Furthermore, I assume individuals
know their heterogeneous level αi because they have observed their health for several decades. This
assumption can be generalized; in studying income profiles, Guvenen (2007) proposes a similar process
for income with heterogeneous intercepts and slopes, both unknown. He finds the learning process for
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about δi given by N(δ̂i0, σ̂
2
0),

12 which they update over time as they see their health changing.

Then, by Bayes rule, posterior beliefs about δi over time are also normally distributed. The

posterior mean δ̂it and variance σ̂2
t have closed-form solutions which are given in Appendix

D.1.

Hence, conditional on health history, the key parameters determining beliefs are the

parameters governing initial beliefs:

b = E(δ̂i0 − δi),

λ2 =
σ̂2
0

V ar(δi)
.

The parameter b measures the bias in initial beliefs at the population level. If b is positive

(negative), individuals are upward (downward) biased, and hence, they believe health dete-

riorates on average more slowly (faster) than the average rate. The parameter λ measures

the degree of initial uncertainty individuals face regarding δi, which affects their amount

of learning over time. If λ = 0, there is no uncertainty and therefore no learning. The

larger the value of λ, the more uncertain individuals are. The Bayesian learning and nor-

mality assumptions allow me to reduce the dimensionality of the problem, giving structure

to time-varying beliefs that are unobserved by the econometrician.

4.2 Relation with survival expectations

To pin down these two parameters, b and λ, I use data on subjective survival expectations.

The intuition for identification using this data is as follows. Each period, individuals observe

their health and update their beliefs regarding their unknown δi. This new information allows

them to also update their beliefs about their future health, and hence their expectations

about future survival. Thus, slope beliefs, unobserved by the econometrician, are closely

linked to survival expectations, which are observed. The function depends on the health and

survival processes estimated in Section 3, and it is given in Appendix D.2. If individuals

have a large negative (positive) bias in beliefs, expecting their health to deteriorate too fast

(slow), survival expectations are going to be lower (larger). Hence, we can pin down b using

levels of survival expectations. Proposition 4.1 provides a formal identification result for λ

using data on expected survival rates.

intercepts is much faster than the learning process for slopes.
12 The assumption of common-prior variance across individuals, i.e. that σ̂0 does not depend on i, is usual in

the learning literature. See, for example, Guvenen (2007) and Arcidiacono, Aucejo, Maurel, and Ransom
(2016). However, the assumption is important for the identification results provided later.
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Proposition 4.1 (Identification of λ) Let the health and survival processes be given by

equations (A2) and (A3), and assume individuals are Bayesian learners with prior beliefs

about δi following N(δ̂i0, σ̂
2
0). Let Ωit be the information set of individual i after observing

his health up to period t. Thus, αi, δ̂it, σ̂
2
t ∈ Ωit. Consider the subjective expectations about

survival rates between periods t+ 2 and t+ 3, from the point of view of t+ 1 and t, that is,

the expected survival rates 1 and 2 periods ahead.

b
(1)
it+1 ≡ P(Sit+3 = 1|Sit+2 = 1,Ωit+1),

b
(2)
it ≡ P(Sit+3 = 1|Sit+2 = 1,Ωit).

Define ∆Bit+1 = Φ−1(b
(1)
it+1)− wtΦ

−1(b
(2)
it ), the weighted difference of these expected survival

rates, where Φ is the standard normal CDF and wt is constant across individuals.
13

Then, there exist a function F (λ, t,Θ), such that, conditional on hit, b
(1)
it and b

(2)
it ,

Cov(∆Bit+1,∆hit+1) = F (λ, t,Θ), (1)

with F (λ, t,Θ) increasing in λ.

The proposition says that, given Θ, we can identify λ with enough longitudinal data

on health and subjective expectations about these survival rates, as the left hand side of

equation (1) would be observed and the right hand side is increasing in the one unknown

parameter λ. Furthermore, this equation says that the key moment for identification is the

covariance between changes in health and changes in expectations about survival rates. The

proof is in Appendix D.3. The key equation (equation (A11)) shows individuals update

their survival expectations for two reasons. The first reason is that health is a persistent

process; thus, any change in health will have future repercussions on health and therefore

on survival. If health is not a persistent process, that is ρ = 0, this channel disappears. The

second reason is that learning implies a change in future predictions of health and therefore

of survival. If there is no uncertainty in beliefs, that is λ = 0, there is no learning and this

channel disappears. The more uncertain beliefs are, i.e for larger values of λ, the larger is

the change in expected survival given the same change in health.

In practice, we do not have data on subjective expectations about survival rates, but we do

have data on (unconditional) subjective expectations about survival and the same intuition

applies there. Appendix D.4 describes a simulation exercise showing that the covariance

between changes in health and changes in survival expectations is the key moment to identify

the uncertainty parameter λ, as shown in Figure 3.

13 The expression for wt is given in Appendix D.3.
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Figure 3: Simulated covariance by uncertainty parameter λ
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Notes: Covariance in simulated data following the structure of the available data in the HRS. The x-axis

shows the value of the uncertainty parameter λ used in the data-generating process. See Apendix D.4 for

details and results on other moments.

4.3 Estimation of beliefs parameters

To estimate bias b and uncertainty λ, I use the Simulated Method of Moments (SMM).14

I use six moments, three in levels and three in differences, corresponding to the mean of

plive10it, its variance, and its covariance with hit. As subjective survival expectations are

measured with error,15 I allow for non-classical i.i.d. measurement error νit ∼ N(µmerror, σ
2
merror),

such that the observed survival expectations are given by p̃live10it = max{min{plive10it +
νit, 1}, 0}.16

Table 3 presents the estimation results. It shows individuals face a sizable amount of

uncertainty and a large amount of negative initial bias; that is, individuals believe their

health will deteriorate with age at a faster rate than what is actually true on average. In

line with previous literature, subjective survival expectations are subject to large amounts of

measurement error. Following Manski and Molinari (2010), I also estimate a version including

rounding and find similar results. Overall, these results are consistent with previous evidence

that finds that, on average, older adults up to 65 years old underestimate their chances

of survival (Elder (2013), Ludwig and Zimper (2013)). Those papers also find adults 80

years and older overestimate their survival chances. My results explain the higher declared

14 I assume (αi, δi, δ̂i0) are jointly normally distributed, with Cov(αi, δ̂i0) = Cov(αi, δi). This assumption

implies the information about δi contained in αi is already incorporated in initial beliefs δ̂i0. In Section 3
we estimated this covariance to be zero.

15 See, for example, Manski and Molinari (2010) and Kleinjans and Van Soest (2014).
16 Note that the measurement error shifts observed survival expectations by µmerror on average. Similarly,

the bias in initial beliefs b also shifts observed survival expectations. However, these two biases have
different effects over time: the average shift due to measurement error is constant with age, given the i.i.d.
assumption, whereas the average shift due to initial bias in beliefs is decreasing with age as individuals
update their beliefs over time. Thus, we can separately identify both effects.
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Table 3: SMM results on prior beliefs

Symbol Coefficient Lower bound Upper bound

Uncertainty λ 0.338 0.336 0.340
Bias b -0.061 -0.061 -0.060
Mean of measurement error µmerror 0.121 0.118 0.123
SD of measurement error σmerror 0.177 0.176 0.177

Notes: Prior beliefs about slopes are unobserved N(δi + b, λ2σ2
δ ), depending on the bias b and uncertainty λ

parameters, whereas subjective survival expectations plive10it are observed but measured with error. The esti-

mation uses a subsample of 2,000 individuals with eight periods, chosen randomly for computational reasons.

Moments are simulated using 20 draws of measurement error and 20 draws of unobserved heterogeneity. The

bounds correspond to a 95% confidence interval, constructed using standard errors clustered at the individual

level.

probabilities of this group by measurement error.

Table 4 presents the fit of the results. The top panel shows the fit of the targeted moments

using plive10it, whereas the bottom panel shows the fit of similar non-targeted moments using

survival expectations to age 75. The table shows that the estimation performs reasonably

well both for targeted and non-targeted moments.

The learning model and the results in this section rely on two simplifying assumptions:

that health is exogenous and that health is the only source of information regarding δi. The

first assumption is common in models of labor supply of older adults and it is considered a

reasonable simplification for this group, as studies that allow for health care effects on health

find only small effects (French and Jones (2017)). This exogeneity assumption rules out the

possibility of individuals changing their behavior to affect their health. If that were possible,

survival expectations would include individuals’ plans of changing their future behavior in

order to change their future health and their survival chances. As those planned behaviors are

more likely to compensate for bad future outcomes, the results in this paper would be lower

bounds on the magnitude of the underlying bias and uncertainty under an endogenous health

process. The second assumption is common in learning models, and it rules out endogenous

acquisition of health-related information, for example, by some individuals going to their

doctors to better predict their future health. This assumption is partly addressed in Section

6 where I look at an additional and exogenous source of information that may shift beliefs.
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Table 4: Moments’ fit

(a) Targeted moments

Data moment SE Simulated moment

E(plive10) 0.531 (0.00011) 0.538
E(plive102) 0.371 (0.00012) 0.357
E(plive10 · h) 2.890 (0.00065) 2.957
E(∆plive10) -0.013 (0.00002) -0.014
E((∆plive10)2) 0.070 (0.00003) 0.066
E(∆plive10∆h) 0.007 (0.00002) 0.007

(b) Non-targeted moments

Data moment SE Simulated moment

E(plive75) 0.702 (0.00017) 0.806
E(plive752) 0.556 (0.00021) 0.687
E(plive75 · h) 3.886 (0.00101) 4.469
E(∆plive75) -0.001 (0.00010) 0.018
E((∆plive75)2) 0.054 (0.00008) 0.042
E(∆plive75∆h) 0.006 (0.00005) 0.003

Notes: Panel (a) uses the same sample used for estimation. Panel (b) uses a subsample of 1, 247 individuals

up to 65 years old who are asked plive75it (the percentage chance you will live to be 75). Standard errors

are clustered at the individual level.
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5 Working decisions and beliefs about health

In this section I answer the main question of this paper, that is, how beliefs about

health dynamics matter for labor-participation decisions of older adults. I am interested in

understanding if individuals expecting their health to deteriorate more rapidly make different

working decisions than similar individuals -with similar health- but who expect their health

to deteriorate more slowly. The overall goal is to understand how bias in these beliefs affect

working decisions, and therefore, if eliminating that bias could significantly change those

decisions.

In a dynamic model of working decisions of older adults, there are several potential

channels through which future health, and therefore health beliefs, may matter for working

decisions. First, health may affect the marginal utility of consumption and the disutility

of work. Second, it may enter the budget constraint via health-related costs and via wages

through effects in productivity. Third, as mentioned before, health affects the probability

of survival. These channels could have opposite effects on working decisions. For example,

individuals may decide to work longer in order to save more, in cases when they expect to

be in good health and therefore anticipate to live long, or in cases when they expect to be

in bad health and therefore anticipate higher health-related costs. Hence, the overall effect

of health beliefs on working decisions of older adults is an empirical question.

I focus on the extensive margin and study the working decision rule, pit = 1. This rule is

a function of the information available to individuals when they make their decisions, that is,

their information sets Ωit−1.
17 These sets include variables that are observed and unobserved

by the econometrician. I consider an environment with heterogeneous and uncertain health

dynamics, and focus on a class of dynamic models where the observed variables are given

by age t, lagged working decision pit−1, lagged health hit−1, and other controls zit, and the

unobserved variables are given by health levels αi, slope beliefs δ̂it−1, σ̂
2
t−1, and i.i.d. taste

shocks νit.
18

Let Φ denote the expected decision rule,

Eν(pit|t, pit−1, hit−1, αi, δ̂it−1, σ̂
2
t−1, zit) = Φ(t, pit−1, hit, αi, δ̂it, σ̂

2
t , zit), (2)

with ∂Φ

∂δ̂it
the main object of interest.19 In estimating this quantity, the main difficulty is the

17 I assume labor-participation decisions pit are made before health shocks are realized and health hit is
observed.

18 This restriction rules out other forms of heterogeneity, for example, heterogeneity in preferences which we
are not able to identify without further assumptions.

19 The assumptions of the learning model imply the posterior variance σ̂2
t is constant across individuals of the

same age t. Given that age is also a relevant determinant of working decisions, I don’t have enough variation
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presence of time-varying unobserved variables, δ̂it and σ̂2
t . To overcome this difficulty, the

key observation is that, under the assumptions of the model, these time-varying unobserved

variables can be written as functions of time-invariant unobserved variables (αi,δ̂i0) and the

observed health path (hi1, . . . hiTi
). Furthermore, the vector (αi,δ̂i0) has a known distribution,

whose parameters are identified using survival expectations data. Hence, in estimation I

integrate out this heterogeneity. The availability of longitudinal data, including data on

survival expectations, is key to estimate the effect of health beliefs on working decisions.

5.1 Effects of health beliefs

I study how working decisions pit depend on health and health beliefs by estimating

reduced-form equations (2) parametrically, by probit, and non-parametrically, by neural

networks. Appendix E.2 provides details of the probit implementation, and Appendix E.3

provides details of the neural network implementation, including the EM algorithm used to

deal with the unobserved heterogeneity. In this section, I restrict the analysis to a sample

of individuals who are attached to the labor market, defined as individuals with at least 20

years of working experience. Appendix E.1 includes descriptive statistics on the observed

control variables zit.

The parametric results are shown in Table 5 column (1). The table shows that beliefs

do matter for working decisions of older adults, with a positive and significant coefficient for

δ̂it−1. This positive sign implies expecting better health, that is, expecting health to dete-

riorate more slowly with age, is associated with larger probabilities of working. The table

also shows that survival expectations plive10it−1 are significant predictors of the probability

of working, but that significance holds only while slope beliefs are not accounted for (see

columns (2) and (3)). These results are consistent with survival expectations reflecting indi-

viduals’ beliefs about slope heterogeneity. Thus, once those beliefs are considered, survival

expectations do not provide additional information.

Regarding the other controls, as expected, the probability of working decreases with

age and increases with better lagged health. Also, the probability of working is larger for

individuals who were working the previous period, confirming the dynamic aspect of the

working decisions.

I then turn to a more flexible non-parametric estimation that can account for non-linear

and heterogeneous effects. The results are shown in Figure 4. The figure shows the average

marginal effects of health hit−1 on working decision pit by health hit−1 and health beliefs

δ̂it−1. It shows that health has positive marginal effects which are larger for individuals in

to disentangle these two effects separately; any results would be based on functional-form assumptions
alone. Therefore, I focus instead on interpreting the effects of the posterior mean.
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Table 5: Parametric results on the probability of working

(1) (2) (3)

Coefficient SE Coefficient SE Coefficient SE

Age t− 1 -0.20*** (0.016) -0.08*** (0.003) -0.19*** (0.016)
Lagged work pit−1 2.03*** (0.018) 2.03*** (0.019) 2.03*** (0.019)
Lagged health hit−1 0.17*** (0.024) 0.26*** (0.033) 0.18*** (0.046)
Health intercepts αi 0.24*** (0.036) 0.07 (0.046) 0.24*** (0.075)

Beliefs mean δ̂it−1 1.93*** (0.249) 1.90*** (0.499)
Beliefs variance σ̂2

t−1/σ
2
δ -13.85*** (2.048) -13.33*** (2.102)

Survival expectations plive10it−1 0.11*** (0.031) 0.01 (0.043)

Controls other vars Ωit−1 Yes Yes Yes
N individuals 14,969 14,718 14,718
N observations 58,040 55,592 55,592

Notes: Standard errors are clustered at the individual level.*** p < 0.01, ** p < 0.05, * p < 0.1.

their 50s who were not previously working (panel b). Furthermore, for this group, there is an

interaction between beliefs and health in determining future participation decisions, as health

has larger marginal effects for individuals with better beliefs, that is, for individuals who

believe their health will deteriorate more slowly. This pattern is not observed for individuals

age 66 to 75 years old. Figure E1 in the appendix show similar results for the marginal

effects of beliefs.

One potential explanation for the pattern observed in Figure 4 is the presence of ad-

justment costs of going back to work. These adjustment costs could be due, for example,

to lower wages caused by the loss of tenure, difficulties in finding jobs or in adapting to

new work environments. If going back to work is costly, then the decision to go back to

work depends on whether the expected benefits are larger than those costs. In turn, those

expected benefits depend on how long individuals expect to remain working. For individu-

als who expect their health to deteriorate slowly, an improvement in health today will last

for several periods, so they anticipate remaining in work. For individuals who expect their

health to deteriorate rapidly, an improvement in health today will quickly dissipate, so they

anticipate not wanting to work for long. Hence, an improved health today has a different

implication depending on health beliefs.

The data-driven approach used for the non-parametric estimation has the advantage of

letting the data suggest mechanisms that may be overlooked otherwise, like the adjustment-

cost mechanism described before. Overlooking important mechanisms is a source of mis-

specification in structural models. Hence, the approach in this paper complements such

models, by providing a flexible way to identify patterns in the data that suggest mechanisms

to incorporate in those models.
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Figure 4: Average marginal effect of health hit−1 on the probability of working pit

(a) Individuals in their 50s, pit−1 = 1 (b) Individuals in their 50s, pit−1 = 0

(c) Individuals 66 to 75 years, pit−1 = 1 (d) Individuals 66 to 75 years, pit−1 = 0

Notes: Non-parametric results. In each plot, the x- and y-axis correspond to deciles of health hit−1 and mean

slope beliefs δ̂it−1 for the corresponding subsample of the plot. The z-axis corresponds to the work response

(probability).

5.2 The dual role of health shocks

In the context of uncertain health dynamics, a health shock ϵit−1 has two roles in working

decisions. On the one hand, a health shock ϵit−1 affects health hit−1. On the other hand, an

uncertain individual cannot perfectly distinguish between ϵit−1 and δi within hit−1. Hence,

the effect of a shock ϵit−1 on hit−1 is partly interpreted as new information regarding δi,

affecting beliefs δ̂it−1. The total effect of a health shock is a weighted sum of the effects
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through these two channels. Using Bayes’ rule, we can write,

dP(pit = 1|Ωit−1)

dϵit−1

=
∂P(pit = 1|Ωit−1)

∂hit−1︸ ︷︷ ︸
health-state channel

+
∂P(pit = 1|Ωit−1)

∂δ̂it−1

factor︷ ︸︸ ︷
(t− 1)σ̂2

t−1

σ2
ϵ︸ ︷︷ ︸

information channel

, (3)

where the factor term corresponds to the change in the posterior mean δ̂it−1 given a marginal

change in ϵit−1, and it is related to the signal-to-noise ratio of health as a signal.

Empirically, I find that on average less than 1% of the effect of health shocks ϵit−1 in

working decisions comes through the information channel, because health shocks have only

small effects on beliefs δ̂it−1.
20 This last observation implies that health itself is not enough

to quickly reduce the initial bias in beliefs, and hence this bias could have sizable effects on

working decisions over time, a question I address next.

5.3 Eliminating the initial bias

In this section, I study how eliminating bias in initial beliefs, that is, setting E(δ̂i0) =

E(δi), would affect labor participation of older adults. To do this, I use an impulse-response-

function approach, changing only initial beliefs. Over time, this change in initial beliefs

translates into changes in posterior beliefs, labor-participation decisions, and decisions re-

garding assets and health insurance.21 Note this exercise assumes no other variable changes

in response to the change in initial beliefs or to the subsequent changes in participation,

assets, or health insurance. Therefore, the exercise relies on these variables capturing the

main choices.22

Figure 5 shows the results. It shows that the effect on the probability of working has

an inverted-U shape. In the early 50s, the effect is small given that individuals are still

mostly working. But as people start to retire, their new beliefs imply larger probabilities

of working that do not vanish completely over time and remain above 2 percentage points

for individuals in their early seventies. Note that, in the baseline scenario, the average

probability of working is 34% at age 66 and 17% at age 78; hence, the increment in the figure

is not trivial.23 Furthermore, because this effect results from eliminating a misconception

20 The Online Appendix shows that this overall result also holds when looking at specific ages and past
participation decisions.

21 The effects on these last two variables were also predicted using a neural-network approach.
22 The results presented in this section use the incomplete prior of the unobserved heterogeneity which

already accounts for the information in the health and survival expectations variables. Incorporating the
additional information has only a minor effect.

23 As a reference, using a structural model, French and Jones (2011) find that raising Medicare age from
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Figure 5: Impulse-response function to a shift in prior beliefs eliminating overall bias b
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Note: Impulse-response function using the subsample of individuals used in estimation that are
observed at 52 years old, corresponding to 1,184 individuals.

at the population level, it is an easier policy target that could be addressed by information

campaigns, without the need to provide individual-specific information.

Overall, these results show that health beliefs matter for the working decisions of older

adults, and that health itself is not a precise enough signal to correct the bias in beliefs.

Hence, in Section 6 I look at an information shock that could potentially affect beliefs, and

through them, affect working decisions.

6 An information experiment: Blood-based biomark-

ers as signals of health

In this section, I study the effects of an information shock on expectations and decisions:

information on blood-based biomarkers. I exploit that in 2006 the HRS introduced the

collection of blood samples for measuring biomarkers. In particular, three biomarkers are

measured and individuals are informed of their results: HDL cholesterol, total cholesterol,

and blood glucose hbA1c.24

To control costs associated with the collection of biomarkers, the HRS randomly split the

sample into two halves, and in each wave, it collects these biomarkers in only one of those

halves. Hence, this collection scheme provides us with an information experiment, that is, it

provide us with exogenous variation in who receives this information. Note, however, that

65 to 67 leads individuals to work an additional 0.074 years over ages 60 to 69, whereas eliminating two
years’ worth of Social Security benefits increases time spent in the workforce by 0.076 years.

24 Two other biomarkers are measured: C-reactive protein (CRP), a general marker of systemic inflammation,
and Cystatin C, an indicator of kidney functioning. However, individuals are not informed of their results
on these two biomarkers; hence, they do not provide additional information.
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the goal of the HRS was not to set an experiment, and therefore this experiment is not ideal.

An ideal experiment would include a control arm of individuals who get their blood taken

and their biomarkers measured but who are not informed of their results. Still, the HRS

collection scheme of biomarkers does provide us with exogenous variation that I use in this

section.

6.1 Reduced-form approach

I start by estimating the overall effect of receiving this information on individuals’ survival

expectations and working decisions, using a difference-in-difference type of argument.

There is one additional difference between the two groups: interview mode. Tradition-

ally, the HRS has been a phone interview,25 while an in-person interview is required to

collect the blood samples. The interview mode could have an effect on individuals’ answers,

in particular, on questions regarding opinions and expectations. However, the timing of

the information provision allows me to separately identify the interview-mode effect from

the information effect, because that information is only provided to individuals after the

fieldwork.26 Hence, individuals do not have the information in the wave when the blood is

collected, but in the following wave.

Figure 6 presents the timing of the biomarker collection and the information experiment,

and it helps us visualize the identification strategy. First, a difference-in-differences analysis

using waves 7 and 8 returns the interview-mode effect. Second, a difference-in-differences

analysis using waves 7 and 9 returns the interview-mode effect (with the opposite sign)

plus the information effect of receiving the additional signal. Hence, we can identify the

information effect by adding these two terms.

25 There are exceptions to this general rule, with in-person interviews conducted for first interviews of new
cohorts, people who request in-person interviews, and individuals residing in nursing homes. A shift to
in-person interviews in 2004 also occurred in an attempt by the HRS to increase individuals’ consent to
link their survey responses with administrative data. These differences in interview mode are unimportant
for the analysis as long as they are applied in the same way across the two groups.

26 The results are provided around a month after the survey has ended (see Edwards (2018) for details).
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Figure 6: Timing of the biomarker collection and information experiment
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Therefore, I estimate the following equation:

yiw = β0 + β1dgi + β2wdw + β3wdgi · dw + ϵiw, (4)

where i denotes an individual and w denotes a wave. I consider two dependent variables

separately, survival expectations plive10iw and a binary of working piw. I estimate these

equations using a balanced sample of individuals observed from waves 5 to 9.27 dgi is a

dummy for the group of individuals set for blood collection in wave 8 (group 1 in Figure 6,

with group 2 as the reference category), and dw are dummies for waves 6 to 9 (wave 5 is the

reference category). Hence, the interview-mode effect is given by β3w8 , and the information

effect is given by β3w8+β3w9 , where the interview-mode effects in each group cancel each other

out. While we can not test for parallel trends, parallel pre-trends hold if β3w6 = β3w7 = 0.

Randomization in the selection of the two groups implies β1 = 0.

Table 6 presents the estimation results of equation (4) for both plive10iw and piw in

columns 1 and 4 respectively. For both outcomes, the groups are similar and pre-trends are

parallel. When looking at the results for survival expectation, plive10iw, the table shows

a positive and significant interview-mode effect of 1.77 percentage points and a similar but

insignificant information effect of 1.36 percentage points. Though insignificant, this positive

sign is aligned with what we already know about beliefs: on average, individuals’ beliefs

about health and survival are downward biased. Therefore, providing more information

shifts those expectations up. When looking at the results for working decisions, piw, we find

no significant effect of interview mode28 or information. Overall, these results suggest the

signal is not large enough to have a significant effect on expectations and decisions.

The table also shows the results by education level. For adults with a college degree,

27 I use only up to wave 9 because from wave 10 onward the groups are no longer comparable, given that
they have been provided information with different timing.

28 The lack of an interview-mode effect on working decisions is expected, given the more objective nature of
working outcomes versus survival expectations.
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Table 6: Information and interview-mode effects of biomarker experiment

Survival expectation Working decision
(plive10iw) (piw)

All Below college College All Below college College

(1) (2) (3) (4) (5) (6)

Group 1 (β1) -0.0047 -0.0024 -0.0138 0.0034 0.0055 -0.0077
(0.007) (0.008) (0.012) (0.011) (0.012) (0.022)

Wave 6 (β2w6) -0.0142 -0.0121 -0.0209 -0.0723 -0.0680 -0.0861
(0.004) (0.005) (0.008) (0.006) (0.007) (0.012)

Wave 7 (β2w7) -0.0150 -0.0144 -0.0172 -0.1156 -0.1156 -0.1155
(0.005) (0.005) (0.008) (0.007) (0.008) (0.013)

Wave 8 (β2w8) -0.0641 -0.0612 -0.0737 -0.1645 -0.1577 -0.1865
(0.005) (0.006) (0.009) (0.007) (0.008) (0.015)

Wave 9 (β2w9) -0.0357 -0.0322 -0.0470 -0.2040 -0.2004 -0.2153
(0.005) (0.006) (0.010) (0.008) (0.009) (0.015)

Group 1, wave 6 (β3w6) 0.0028 -0.0006 0.0137 0.0061 0.0026 0.0175
(0.006) (0.007) (0.011) (0.008) (0.009) (0.016)

Group 1, wave 7 (β3w7) -0.0027 -0.0024 -0.0033 0.0099 0.0099 0.0100
(0.006) (0.007) (0.011) (0.009) (0.011) (0.018)

Group 1, wave 8 (β3w8) 0.0177 0.0129 0.0331 0.0098 0.0031 0.0315
(0.007) (0.008) (0.012) (0.010) (0.012) (0.020)

Group 1, wave 9 (β3w9) -0.0042 -0.0112 0.0182 0.0099 0.0119 0.0043
(0.007) (0.008) (0.013) (0.010) (0.012) (0.021)

Constant 0.5397 0.5242 0.5896 0.4877 0.4504 0.6071
(0.005) (0.005) (0.009) (0.008) (0.009) (0.016)

Observations 41,930 31,815 10,115 41,923 31,810 10,113
R-squared 0.004 0.004 0.005 0.021 0.021 0.022

Interview mode effect (a) 0.0177 0.0129 0.0331 0.0098 0.0031 0.0315
P-value 0.0078 0.1038 0.0057 0.3244 0.7910 0.1137

Information effect (a)+(b) 0.0136 0.0016 0.0512 0.0197 0.0149 0.0359
P-value 0.2604 0.9082 0.0199 0.3040 0.5004 0.3521

F test pre-trends 0.4195 0.0577 1.4434 0.5838 0.5031 0.5946
P-value 0.6574 0.9439 0.2364 0.5578 0.6047 0.5519

Notes: Results of estimating equation (4). The sample consists of N = 8, 386 individuals with non-proxy

interviews who are at least 50 years old in wave 8 and who give a valid answer to plive10iw every wave

between waves 5 and 9. Seven of these observations do not have information on piw. Standard errors are

clustered at the household level.
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both the interview-mode and information effects are larger and significant when looking at

survival expectations. These effects are also somewhat larger for their working decisions

though still not significant. For adults with less than a college degree, no significant effects

are found for any of the two outcomes. These differences by education level suggest that

the ability to process the information matters, with more educated adults internalizing the

information better.29

Appendix F.1 further decomposes group 1 into adults who have a bad biomarker result

versus those who do not. As we cannot make the same distinction in group 2,30 we lack the

relevant control groups to identify information effects by the type of signal received (without

selection issues). However, this analysis is interesting because it shows that, compared to

those who do not receive a bad result, those who receive a bad result already have lower

survival expectations and working probabilities by wave 7, two years before the biomarkers

are measured. This result suggests that the later group already knew at least some of the

information signaled by the biomarkers.

6.2 Model-based approach

In this section, I use the learning model to re-assess the reduced-form results. I predict

survival expectations for groups 1 and 2 over waves 8 and 9, including the biomarker results as

additional signals when available. That is, in wave 8, when neither group has been informed

of their biomarker results, I predict these survival expectations as I did in Section 4, assuming

a learning model with health as the only signal. In wave 9, I do the same for predicting

survival expectations of group 2. For group 1, who already received their biomarkers results,

I predict survival expectations assuming a learning model with biomarkers as additional

signals. The goal is to compare these model-base results with the reduced-form results.

For these biomarkers to be valid signals in the learning model, a necessary condition is

that they must be correlated with δi, the unknown value that is learned over time. To predict

survival expectations when biomarkers are available, we need a measure of these correlations

as well as their precision as signals.

To estimate those additional parameters, I use the information experiment in a spirit

similar to Todd and Wolpin (2006). Specifically, I estimate those parameters by Simulated

Method of Moments using future data on group 2: their survival expectations in wave 10

29 A similar analysis for the number of doctor visits finds no interview-mode nor information effects for either
group. Still, more educated individuals may be better able to incorporate the new information with the
help of their physicians, even if the number of doctor visits remains the same.

30 One possibility would be to use the biomarker results in wave 9 to attempt the same distinction for
group 2. However, using subsequent waves, we can see that biomarker results change from wave to wave,
invalidating this strategy.
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Table 7: Predicted survival expectations in a model with health and blood glucose as signals

Number of Predicted survival expectations

observations wave 8 wave 9 wave 9 - wave 8

Control (group 2) 4,852 .458 .454 -.003
Treated (group 1) 5,357 .448 .449 .001

Treated with bad blood glucose 552 .391 .385 -.005
Treated with good blood glucose 3,649 .460 .463 .003
Treated no blood glucose 1,156 .438 .437 -.002

Notes: The sample consists of N = 10, 209 individuals with non-proxy interviews who are at least 50 years

old in wave 8 and who provide a valid answer to plive10iw in waves 8 and 9. Survival expectations are

predicted from a model with one signal for the control group (health) and two signals for the treated group

(health and blood-glucose results). These two signals are assumed to be independent conditional on individual

heterogeneity. The parameters determining the strength of blood glucose as a signal of δi come from an

estimation using future values of the control group (waves 9 and 10).

and their biomarker results collected in wave 9 (and informed to them between waves 9 and

10). Then, I use these estimates to predict survival expectations of group 1 in wave 9, based

on their health and biomarker results. The randomness in the selection of the groups implies

the parameters recovered by looking at group 2 must also represent the parameters governing

the biomarker signals for group 1.

Table 7 presents the results based on the learning model. According to this table, by

having the biomarkers as additional signals, group 1 increases their survival expectations

between waves 8 and 9 by 0.4 percentages points relative to the control group. This change

in survival expectations is positive but negligible, consistent with the reduced-form results in

Table 6. Thus, though a valid signal for health dynamics, biomarker results are not enough

to shift beliefs substantially and significantly affect decisions.

7 Conclusion

This paper documents individual-level heterogeneity in health dynamics among older

adults and studies how individuals’ beliefs about their own health dynamics affect their

working decisions.

I start by showing evidence that health dynamics are indeed heterogeneous, in particular,

in their slope of health with age, with health deteriorating faster for some older adults than

for others. This heterogeneity helps explain why as the population ages the variance of

health increases, a fact ignored by traditional models of health.
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Motivated by this evidence, I turn to the question of how much individuals know about

their own health dynamics. I assume individuals are Bayesian learners and update their

beliefs as they see their health changing with age. As future survival depends on future

health and, therefore, on health dynamics, I leverage data on subjective survival expectations

to estimate the learning parameters. I find that indeed individuals are uncertain about how

fast their health will deteriorate with age, and that they are also negatively biased, that

is, on average, they believe their health will deteriorate faster than the average rate in the

population.

For older adults, health is an important determinant of many decisions. When health

dynamics are uncertain, beliefs about future health may also be important, in particular

for decisions with dynamics consequences. In this paper, I study working decisions of older

adults, focusing on the extensive margin. I find beliefs matter for these decisions, and that

expecting health to deteriorate more rapidly is associated with lower probabilities of working.

Furthermore, if we could eliminate the bias in beliefs, participation would increase by up to

2 percentage points, an effect that would last beyond traditional retirement ages.

Additionally, flexible estimation using neural networks shows there is an interaction be-

tween health and beliefs about health in the working decisions of older adults. For individuals

in their 50s who are not working, improving health has a larger effect on the probability of

working when beliefs about health are also better, that is, when the improvement in health

is expected to last longer, suggesting the presence of adjustment costs of returning to work.

Overall, the previous results suggests there is room for policies to affect labor-participation

decisions by shifting individuals’ beliefs about their health. In the last part of the paper, I

look at one such policy: the provision of information on blood-glucose and cholesterol levels.

I take advantage of the randomization of the collection and provision of such information

within the HRS to analize the data. The results show this additional information has negli-

gible effects on survival expectations and working decisions. This negligible result is due to

a small effect of the information on beliefs.

In future work, it will be of interest to study other policies which could have an effect on

beliefs and decisions. For example, policies that provide aggregate information (aiming at

correcting the bias in beliefs at the population level) or more individualized information.31 In

the case of the HRS, policies could include providing information about biomarkers on kidney

function and systemic inflammation, as well as genetic information, all already collected in

the survey but not shared with individuals.

31 Information policies have been studied in other settings, for example, Delavande and Kohler (2015) and
Bates (2020). Information policies have also been studied in the context of surveys, for example, Armona,
Fuster, and Zafar (2018) and Wiswall and Zafar (2014).

25



References

Arcidiacono, P., E. Aucejo, A. Maurel, and T. Ransom (2016): “College Attrition
and the Dynamics of Information Revelation,” .

Armona, L., A. Fuster, and B. Zafar (2018): “Home Price Expectations and Be-
haviour: Evidence from a Randomized Information Experiment,” The Review of Economic
Studies, 86(4), 1371–1410.

Bates, M. (2020): “Public and Private Employer Learning: Evidence from the Adoption
of Teacher Value Added,” Journal of Labor Economics, 38(2), 375–420.

Blundell, R., J. Britton, M. C. Dias, and E. French (2017): “The impact of health
on labour supply near retirement,” IFS Working Papers W17/18, Institute for Fiscal
Studies.

Bound, J., M. Schoenbaum, T. R. Stinebrickner, and T. Waidmann (1999): “The
dynamic effects of health on the labor force transitions of older workers,” Labour Eco-
nomics, 6(2), 179 – 202.

Contoyannis, P., A. M. Jones, and N. Rice (2004): “The dynamics of health in the
British Household Panel Survey,” Journal of Applied Econometrics, 19(4), 473–503.

Delavande, A., and H.-P. Kohler (2015): “HIV/AIDS-related Expectations and Risky
Sexual Behaviour in Malawi,” The Review of Economic Studies, 83(1), 118–164.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977): “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society. Series
B (Methodological), 39(1), 1–38.

Disney, R., C. Emmerson, and M. Wakefield (2006): “Ill health and retirement in
Britain: A panel data-based analysis,” Journal of Health Economics, 25(4), 621 – 649.

Dwyer, D. S., and O. S. Mitchell (1999): “Health problems as determinants of retire-
ment: Are self-rated measures endogenous?,” Journal of Health Economics, 18(2), 173 –
193.

Edwards, R. (2018): “If My Blood Pressure Is High, Do I Take It to Heart? Behavioral
Effects of Biomarker Collection in the Health and Retirement Study,” Demography, 55,
403–434.

Elder, T. E. (2013): “The Predictive Validity of Subjective Mortality Expectations: Evi-
dence From the Health and Retirement Study,” Demography, 50(2), 569–589.

Farrell, M. H., T. Liang, and S. Misra (2021): “Deep Neural Networks for Estimation
and Inference,” Econometrica, 89(1), 181–213.

French, E. (2005): “The Effects of Health, Wealth, and Wages on Labour Supply and
Retirement Behaviour,” The Review of Economic Studies, 72(2), 395–427.

26



French, E., and J. B. Jones (2011): “The Effects of Health Insurance and Self-Insurance
on Retirement Behavior,” Econometrica, 79(3), 693–732.

(2017): “Health, Health Insurance, and Retirement: A Survey,” Annual Review of
Economics, 9(1), 383–409.

Goodfellow, I., Y. Bengio, and A. Courville (2016): Deep Learning. MIT Press,
http://www.deeplearningbook.org.

Guvenen, F. (2007): “Learning your earning: Are Labor Income Shocks Really Very
persistent?,” The American Economic Review, 97(3), 687–712.

Guvenen, F., and A. A. Smith (2014): “Inferring Labor Income Risk and Partial Insur-
ance From Economic Choices,” Econometrica, 82(6), 2085–2129.

Halliday, T. J. (2008): “Heterogeneity, state dependence and health,” The Econometrics
Journal, 11(3), 499–516.

Health and Retirement Study (2014): “(RAND HRS Longitudinal File, HRS Core and
Biomarker Data) public use dataset,” Produced and distributed by the University of Michi-
gan with funding from the National Institute on Aging (grant number NIA U01AG009740).
Ann Arbor, MI.

Heiss, F. (2011): “Dynamics of self-rated health and selective mortality,” Empirical eco-
nomics, 40(1), 119–140.
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APPENDIX

A Overview of sub-samples

In this section, I provide an overview of the sub-samples used for the main analyses in

the paper, starting from the main sample of individuals 50 years and older with a personal

interview between waves 4 and 12.

Table A1: Sub-samples

Section 3
Heterogeneity

Table 2 Individuals observed at 50 years old and their consecutive
waves

Figure 1 Individuals observed at 50 years old with over 9 consecutive
waves

Figure 2 Individuals observed at 66 years old with over 9 consecutive
waves

Section 4
Uncertainty

Table 3 Subset of 2,000 individuals with 8 consecutive waves

Table 4 (a) Subset of 2,000 individuals with 8 consecutive waves

Table 4 (b) Individuals up to 65 years old who are also asked plive75

Section 5
Working
decisions

Table 5 Individuals with at least 20 years of working experience

Figure 4 Individuals with at least 20 years of working experience

Figure 5 Individuals with at least 20 years of working experience,
observed at 52 years old

Section 6
Information
experiment

Table 6 Individuals interviewed in waves 5 to 9 with a valid answer
in plive10

Table 7 Individuals interviewed in waves 8 and 9 with a valid answer
in plive10
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B Health measurement

In this section, I describe the health measures and the method used to construct the

summary health variable hit. Table B1 presents descriptive statistics on these health-related

measures.

Table B1: Descriptive statistics on health measures

Measure Observations Mean SD Min Max

Number of chronic conditions 156,968 1.83 1.34 0 7
Self-assessed health 156,862 2.86 1.11 1 5
Body mass index (kg/m2) 154,602 27.89 5.81 7 83
Eyesight in general 156,768 2.85 1.01 1 6
Eyesight at a distance 156,833 2.57 1.01 1 6
Eyesight up close 156,822 2.75 1.04 1 6
Hearing 156,869 2.63 1.09 1 5
Pain 156,550 0.63 0.97 0 3
Difficulties in ADLs regarding mobility 156,748 1.09 1.45 0 5
Difficulties in ADLs of large muscles 156,737 1.28 1.33 0 4
Difficulties in other ADLs 151,923 0.40 0.66 0 2

Summary health variable hit 148,866 5.19 0.67 2.94 6.15

Notes: Descriptive statistics on health measures and summary health variable. The sample includes 156,976

observations and comprises 31,210 individuals interviewed in person, in wave 4 or later, that are 50 years

old or older. Chronic conditions include high blood pressure, heart attack, diabetes, stroke, lung disease,

arthritis, and cancer. The categories for self-assessed health, eyesight and hearing variables are 1. excellent,

2. very good, 3. good, 4. fair, 5. poor, with an extra category 6. legally blind for eyesight variables. The

categories for the level of pain are 0. no pain, 1. mail pain, 2. moderate, 3. severe. ADL stands for activities

of daily living. ADLs regarding mobility include walk 1 block, several blocks, across room, climb one flight

of stairs, several flight of stairs. ADLs involving large muscles include push or pull large object, sit for two

hours, get up from chair, stoop kneel or crouch. Other ADLs include carry 10 lbs and reach arms.

In constructing the summary health variable, I consider the following model. Let Mijt be

the jth observed measure of unobserved health hit, for j = 1, . . . 11. I assume a linear factor

model structure,

Mijt = µj + λjhit + ϵhijt, (A1)

where ϵhijt is a measurement error, and intercepts µj and loadings λj are invariant in age t.

To fix the location and scale of hit, I set the intercept and loading of the number of chronic

conditions to 0 and 1 respectively. I estimate equation (A1) by confirmatory factor analysis
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(CFA)1, assuming classical measurement errors. Estimates of latent health hit are obtained

by minimizing the generalized sum of squares deviations of the factor from their true values.

Table B2 presents the results. The table shows all the coefficients are significant and

have the expected signs. It also shows the percentage of the variance of each measure Mijt

that is explained by health hit, with variables regarding difficulties in ADLs having the

largest R-squared, consistent with their common use in the assignment of many health-

related benefits.2

Table B2: CFA results for health measurement

Measure of health
Coefficients

R-squared
Intercept Loading

Number of chronic conditions(a) 0 1 0.29
Self-assessed health 8.111 -1.017 0.44
Body mass index 37.491 -1.845 0.05
Eyesight in general 5.667 -0.546 0.15
Eyesight at a distance 5.135 -0.497 0.13
Eyesight up close 5.418 -0.517 0.13
Hearing 4.807 -0.421 0.08
Pain 4.827 -0.811 0.36
Difficulties in ADLs regarding mobility 9.396 -1.606 0.64
Difficulties in ADLs of large muscles 8.928 -1.476 0.63
Difficulties in other ADLs 3.790 -0.654 0.50

Note: The sample consists of 148,666 observations from Table B1 that have information on all health mea-

sures. (a) The first measure corresponds to 7 minus the number of chronic conditions, so larger values

represent better health. For this measure, the intercept and loading are fixed to 0 and 1, respectively. All

other coefficients are significant at 1%.

Figure B1 presents a box plot for hit per value of self-assessed health. The figure shows

both measures are highly correlated, but hit captures more variation than what is captured by

the self-assessed measure, specially among those with worse health. As discussed in Appendix

C, the heterogeneity in health dynamics is robust to the use of self-assessed health instead

of the summary variable hit.

1 The values of hit predicted by CFA are highly correlated with the values predicted by principal component
analysis.

2 For example, difficulties in ADLs are considered by Medicare in the provision of long-term care services.
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Figure B1: Summary health variable hit by category of self-assessed health
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Notes: Sample of 148,866 observations from Table B2.

C Estimation of health dynamics

In this section, I provide details of the estimation of the health dynamic process, the full

set of results, and some additional robustness checks.

C.1 Baseline results

I assume the health and survival processes are given by,

hit = ρhit−1 + αi + δi · t+ τ · t2 + ϵit (A2)

Sit = 1{γhit−1 + θ0 + θ1 · t+ θ′2xi + ηit ≥ 0}Sit−1, (A3)

where ϵit ∼ N(0, σ2
ϵ ) and ηit ∼ N(0, 1) are independent over time and independent of each

other at all leads and lags. xi is a vector of demographic characteristics including gender,

race, hispanic ethnicity, and education. Furthermore,(
αi

δi

)∣∣∣∣xi, hi0 ∼ N

((
µα + ν ′

αxi + ωαhi0

µδ + ν ′
δxi + ωδhi0

)
,

[
σ2
α ϕσασδ

ϕσασδ σ2
δ

])
. (A4)

Let Θ be the vector of parameters of this random-coefficients model. The MLE estimator Θ̂

solves

max
Θ

N∑
i=1

log

(∫ ∞

−∞

∫ ∞

−∞

Ti∏
t=1

P
(
hit, Sit|hit−1, Sit−1 = 1, xi, α, δ

)
· ϕ(α, δ|xi, hi0)dαdδ

)
.

Table C1 presents the MLE results for three different specifications. The middle panel

shows the results for the baseline specification, that includes survival and allows for hetero-

geneous slopes. As mentioned in the main text, these results show there is heterogeneity in
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levels and slopes, both of them uncorrelated. There is also no correlation between health at

age 50, hi0, and δi, but hi0 is correlated with αi. Furthermore, next-period survival is strongly

dependent on health. In terms of other observable characteristics, individuals with low levels

of education have worse health, health deteriorates faster for non-white individuals, and the

probabilities of survival are higher for women and Hispanic individuals. For completeness,

the left panel shows the results allowing for unobserved slope heterogeneity but ignoring

survival, while the right panel shows the results including survival but ignoring unobserved

slope heterogeneity.3 Columns (5) and (6) show that if we ignore slope heterogeneity, we

overestimate the persistence of health.

C.2 Robustness checks

In this appendix, I study three robustness checks to the baseline model of health dy-

namics, whose results are shown in Table C2. First, I estimate the model allowing for

heteroskedastic errors in the health equation, with a variance that varies linearly with age.

The results (in the left panel) show that this heteroskedasticity does not explain away the

heterogeneity in health slopes δi. Second, I estimate the model allowing for the heteroge-

neous levels and slopes to directly affect survival. The results (in the middle panel) show

there is no such (joint) effect, hence, survival does not provide additional information on δi.

Finally, I use self-assessed health hSAH
it instead of the summary variable hit, and estimate an

ordinal model. The results (in the right panel) show the presence of slope heterogeneity is

robust to using this measure alone.

D Uncertain dynamics and learning model details

In this section of the appendix, I provide details regarding the beliefs about δi and its

relation with subjective survival expectations plive10it.

D.1 Bayesian updating equations

According to Bayes’ rule, individuals’ beliefs about their health slopes δi (henceforth,

slope beliefs) are normally distributed, N(δ̂it, σ̂
2
t ), with mean and variance defined recursively

3 The model on the right panel allows for heterogeneity in slopes by observed characteristics, but it does not
allow unobserved heterogeneity in slopes.
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Table C1: MLE results on health and survival under different assumptions

Heterogeneous slopes Heterogeneous slopes Homogeneous slopes
without survival eq with survival eq with survival eq

Coefficient Pvalue Coefficient Pvalue Coefficient Pvalue
(1) (2) (3) (4) (5) (6)

ρ 0.225 0.000 0.223 0.000 0.366 0.000
τ 0.001 0.087 0.001 0.119 0.001 0.108
µα 0.968 0.000 0.955 0.000 0.781 0.000
ναfemale -0.029 0.132 -0.029 0.131 -0.024 0.163
ναwhite 0.026 0.338 0.027 0.335 0.018 0.458
ναhispanic 0.004 0.909 0.005 0.889 -0.001 0.973
ναless HS -0.134 0.000 -0.134 0.000 -0.120 0.000
ωα 0.599 0.000 0.603 0.000 0.492 0.000
µδ -0.060 0.012 -0.057 0.018 -0.051 0.000
νδfemale 0.006 0.146 0.006 0.136 0.005 0.198
νδwhite 0.015 0.007 0.015 0.008 0.013 0.011
νδhispanic 0.010 0.196 0.010 0.199 0.006 0.390
νδless HS -0.003 0.677 -0.003 0.624 0.001 0.896
ωδ 0.000 0.956 0.000 0.962
σα 0.235 0.000 0.235 0.000 0.212 0.000
σδ 0.042 0.000 0.043 0.000
ϕ -0.030 0.741 -0.033 0.714
σϵ 0.266 0.000 0.266 0.000 0.285 0.000

γ 0.583 0.001 0.640 0.000
ι1 -0.277 0.334 -0.422 0.125
ι2 0.044 0.986
ι3 0.029 0.306 0.036 0.287
ι4 0.241 0.601
θ0 0.529 0.326 0.514 0.336
θ1 -0.178 0.136 -0.193 0.092
θ2female 0.259 0.002 0.255 0.002
θ2white 0.019 0.847 0.029 0.758
θ2hispanic 0.317 0.079 0.311 0.078
θ2less HS -0.106 0.305 -0.114 0.267

N alive observations 8,901 8,901 8,901
N dead observations 0 112 112
N individuals 1,671 1,671 1,671
-Log likelihood 2,498.6 3,027.6 3,067.6

Notes: The sample consists of 1,671 individuals observed at age 50 and their following consecutive observa-

tions until death or loss of follow up, for a total of 8,901 observations. The demographic variables include an

indicator for female, for white race, for hispanic ethnicity, and for education less than high school. Standard

errors are clustered at the individual level.

by

δ̂it
σ̂2
t

=
δ̂it−1

σ̂2
t−1

+
(hit − ρhit−1 − αi − τt2)t

σ2
ϵ

(A5)

1

σ̂2
t

=
1

σ̂2
t−1

+
t2

σ2
ϵ

. (A6)
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Table C2: MLE robustness checks

Dependent variable: Health hit Health hit Self-assessed health hSAH
it

Coefficient Pvalue Coefficient Pvalue Coefficient Pvalue
(1) (2) (3) (4) (5) (6)

ρ 0.225 0.000 0.223 0.000 0.230 0.000
τ 0.001 0.088 0.001 0.119 0.012 0.000
µα 0.961 0.000 0.955 0.000 -1.185 0.000
ναfemale -0.030 0.122 -0.029 0.131 -0.005 0.951
ναwhite 0.027 0.330 0.027 0.335 0.242 0.009
ναhispanic 0.003 0.928 0.005 0.889 -0.266 0.047
ναless HS -0.134 0.000 -0.134 0.000 -0.603 0.000
ωα 0.601 0.000 0.603 0.000 1.151 0.000
µδ -0.059 0.015 -0.057 0.018 -0.054 0.182
νδfemale 0.006 0.139 0.006 0.136 0.029 0.089
νδwhite 0.015 0.008 0.015 0.008 -0.009 0.647
νδhispanic 0.010 0.193 0.010 0.199 0.060 0.040
νδless HS -0.003 0.661 -0.003 0.624 0.019 0.406
ωδ 0.000 0.986 0.000 0.962 -0.043 0.000
σα 0.234 0.000 0.235 0.000 0.970 0.000
σδ 0.042 0.000 0.043 0.000 0.137 0.000
ϕ -0.025 0.776 -0.033 0.714 -0.257 0.004
σϵ 0.266 0.000 0.266 0.000 1 -
σtϵ 0.000 1.000

γ 0.494 0.000 0.583 0.001 0.402 0.000
θ0 -0.103 0.707 0.529 0.326 1.371 0.000
θ1 -0.083 0.000 -0.178 0.136 -0.101 0.000
θ2female 0.244 0.005 0.259 0.002 0.164 0.043
θ2white 0.025 0.793 0.019 0.847 0.034 0.711
θ2hispanic 0.248 0.263 0.317 0.079 0.404 0.018
θ2less HS -0.096 0.345 -0.106 0.305 -0.076 0.457
ι1 -0.277 0.334
ι2 0.044 0.986
ι3 0.029 0.306
ι4 0.241 0.601

O2 1.712 0.000
O3 −O2 1.711 0.000
O4 −O3 2.063 0.000

Notes: Same sample as in Table C1. In columns (1) and (2), V ar(ϵit) = σ2
ϵ + t ·σ2

tϵ. In columns (3) and (4)

the survival equation (A3) is replaced by Sit = 1{γhit−1+ι1αi+ι2δi+ι3 ·t·αi+ι4 ·t·δi+θ0+θ1 ·t+θ′2xi+ηit ≥
0}Sit−1. In columns (5) and (6) the health equation (A2) is replaced by h̃SAH

it = ρhSAH
it−1 +αi+δi ·t+τ ·t2+ϵit,

where σ2
ϵ = 1, h̃SAH

it is a latent variable, hSAH
it is the observed ordinal value with larger values represent

better health, and O2, O3, O4 are the threshold values. Standard errors are clustered at the individual level.

Equation (A5) shows the posterior mean is a weighted average of the prior mean δ̂it−1

and the signal derived from health hit, with weights that depend on precision. The more

certain an individual is to begin with (lower σ̂2
t−1), the more weight he gives to what he
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already knows, namely, the prior. The more precise health is as a signal (lower σ2
ϵ ), the more

weight is given to its information. Equation (A6) shows precision increases over time, and

increases more when the signal is more precise, that is, when health is less noisy (lower σ2
ϵ )

and when individuals are older.

Alternatively, we can write these equations as

δ̂it = δ̂it−1 +Kt · ζ̂it (A7)

σ̂2
t = (1−Kt · t)σ̂2

t−1, (A8)

where Kt =
σ̂2
t−1·t

σ̂2
t−1·t2+σ2

ϵ
=

tσ̂2
t

σ2
ϵ
, Kt ≤ 1, and ζ̂it is individual i’s perceived innovation in health

at period t, ζ̂it = hit −E(hit|Ωit−1) = hit − ρhit−1 − αi − δ̂it−1 · t− τt2.

D.2 Formula for plive10it

Let Ωit be the information set of individual i after observing his health up to period t.

From equation (A2), we can write for l > t

hil = ρl−thit + αi

l−t−1∑
k=0

ρk + τ
l−t−1∑
k=0

(l − k)2ρk︸ ︷︷ ︸
known under Ωit

+ δi

l−t−1∑
k=0

(l − k)ρk +
l−t−1∑
k=0

ρkϵi(l−k)︸ ︷︷ ︸
unknown under Ωit

. (A9)

Let s denote the reference age asked in plive10it. Then, by equations (A3) and (A9),

plive10it ≡ P(Sis = 1|Ωit) =
s−1∏
l=t

P(Sil+1 = 1|Sil = 1,Ωit) =
s−1∏
l=t

Φ

(
Mitl

W
1/2
tl

)
, (A10)

where

Mitl = γ

(
ρl−thit + αi

l−t−1∑
k=0

ρk + δ̂it

l−t−1∑
k=0

(l − k)ρk + τ

l−t−1∑
k=0

(l − k)2ρk
)
+ θ0 + θ1(l + 1) + θ′2xi

Wtl = γ2σ̂2
t

( l−t−1∑
k=0

(l − k)ρk
)2

+ γ2σ2
ϵ

l−t−1∑
k=0

ρ2k + 1

Note that Mitl and Wtl are functions of hit, αi, δ̂it, σ̂
2
t , xi and the parameters of the model

Θ. Hence, plive10it = plive10it(αi, hit, δ̂it, σ̂
2
t , xi; Θ).

36



D.3 Proof of proposition 4.1

Applying the same derivation as in equation (A10) and defining c1t =
W

1/2
t+1t+2

γ
and c2t =

W
1/2
tt+2

γ
, which are constant across individuals, we can write

c1tΦ
−1(b

(1)
it+1)− c2tΦ

−1(b
(2)
it ) = ρ

(
hit+1 − ρhit − αi − δ̂it(t+ 1)− τ(t+ 1)2

)︸ ︷︷ ︸
due to persistence

+(δ̂it+1 − δ̂it)(t+ 2).︸ ︷︷ ︸
due to learning

(A11)

Using equations (A7) and (A8),

c1tΦ
−1(b

(1)
it+1)− c2tΦ

−1(b
(2)
it ) =

(
ρ+Kt+1(t+ 2)

)
ζ̂it+1

=

(
ρ+Kt+1(t+ 2)

)(
hit+1 −

1

γ

(
W

1/2
tt+1 · Φ−1(b

(1)
it ) + θ0 + θ1(t+ 1) + θ′2xi

))
.

Rearranging the terms, conditional on hit, b
(1)
it and b

(2)
it (belonging to Ωit),

Cov(∆Bit+1,∆hit+1) = G(λ, t,Θ) · V ar(∆hit+1) ≡ F (λ, t,Θ),

where wt =
c2t
c1t
, G = ρ+(t+2)Kt+1

c1t
, ∂F1

∂λ
≥ 0 (strictly greater than zero when λ > 0) and

V ar(∆hit+1) does not depend on λ. ■

D.4 Simulation results

In this section, I show via simulation that the intuition of proposition 4.1 extends to

the available data on survival expectations. In the exercise, I first simulate individual-level

heterogeneity (αi, δi) and health hit, according to equations (A2), (A3) and (A4). Then, for

different values of the uncertainty parameter λ, I simulate initial beliefs (δ̂i0, σ̂
2
0) assuming

b = 0.4 I update those beliefs over time and construct (δ̂it, σ̂
2
t ) using the simulated hit and

the Bayesian updating equations (A5) and (A6). Finally, I use these simulated beliefs, to

construct survival expectations plive10it according to equation (A10). Figure D1 presents

the results. In the figure, each graph depicts the uncertainty parameter λ in the x-axis, and

a simulated moment in the y-axis. The six graphs correspond to the six moments used for

estimation. The top row considers moments in levels, and the bottom row considers mo-

ments in differences. The figure clearly shows that, as with data on expectations on survival

4 I also assume Cov(αi, δ̂i0) = Cov(αi, δi), and set it to zero according to the results of Section 3.
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rates, the covariance between changes in health and changes in expectations is increasing in

the uncertainty parameter λ, and therefore, a key moment for identification.

Figure D1: Simulated moments of plive10it by uncertainty λ in data-generating process

(a) Mean plive10it (b) SD plive10it (c) Cov(plive10it, hit)
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(d) Mean ∆plive10it (e) SD ∆plive10it (f) Cov(∆plive10it,∆hit)
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Notes: Moments in simulated data following the structure of the available data in the HRS. In each figure,

the x-axis shows the value of the uncertainty parameter λ used in the data-generating process. In all cases,

the bias parameter b is set to zero.

E Working decisions

E.1 Descriptive statistics on additional controls

Table E1 present descriptive statistics on the additional controls of working decisions, zit.

E.2 Probit details

Let ωit−1 be the vector of variables in Ωit−1 relevant for the working decision pit: age

t, past working decision pit−1, past health hit−1, health beliefs δ̂it−1 and σ̂2
t−1, individual

heterogeneity in health αi, and other controls zit−1 described in Table E1. Let t0 be the

age at which individual i is first observed in the data.5 Then, the likelihood of the vector

5 Note t0 and T are individual specific, though I omit that index for ease of notation.
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Table E1: Descriptive statistics on additional controls of working decisions

Variable Mean SD Min Max

Panel (a)

Age 66.26 7.49 52 80
Work 0.38 0.49 0 1
Female 0.52 0.5 0 1
Education: less than high school 0.20 0.40 0 1
Education: some college 0.55 0.50 0 1
White 0.84 0.37 0 1
Hispanic 0.06 0.24 0 1
Marital Status: married 0.70 0.46 0 1
Marital Status: separated or divorced 0.12 0.33 0 1
Marital Status: widow 0.14 0.35 0 1
Number of household members 2.15 1.03 1 12
Total number of years worked 39.79 9.17 20 68
Spouse works 0.28 0.45 0 1
Spouse has health insurance 0.17 0.38 0 1
Income from pension 6.08 50.49 0 10000
Income from Social Security 6.65 5.95 0 58.3
Wealth 366.51 730.98 -1585.01 10000
Health insurance: employer covering retirement 0.14 0.35 0 1
Health insurance: employer not covering retirement 0.07 0.25 0 1
Health insurance: employer (already 65) 0.17 0.37 0 1
Health insurance: government 0.47 0.5 0 1
Health insurance: other 0.11 0.31 0 1

Panel (b)

Income from work 30.51 39.83 0 1190.68
Tenure 14.31 12.4 0 66.1
Self-employed 0.22 0.42 0 1
Occupation: managerial 0.16 0.36 0 1
Occupation: professional 0.21 0.4 0 1
Occupation: sales 0.12 0.32 0 1
Occupation: clerical 0.16 0.37 0 1
Occupation: services 0.14 0.35 0 1
Occupation: farming, mechanics, construction, operators 0.22 0.41 0 1
Occupation: FF.AA. 0.00 0.02 0 1
Job requires physical effort 0.17 0.38 0 1
Job requires lifting heavy loads 0.07 0.25 0 1
Job requires stooping or kneeling 0.13 0.34 0 1
Job requires good eyesight 0.68 0.47 0 1
Job involves lots of stress 0.16 0.37 0 1

Note: Descriptive statistics on variables used in estimating working decisions in section 5. The sample

consists of observations from 12,623 individuals who have participated in the labor market for at least 20

years, excluding missing values in any of these variables. Panel (a) comprises 48,607 observations, and

panel (b) comprises 18,415 observations from working periods. Income and wealth variables are measured in

thousands of 2002 dollars. Wealth variables are capped at $10 million dollars.

(pit0 , . . . piT ) conditional on ωit0 , . . . ωiT is given by:

Lc
i = L̃c

it0

T∏
t=t0+1

[
Φ(β′ωit−1)

pit ·
(
1− Φ(β′ωit−1)

)1−pit

]
,
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where L̃c
it0

is the probability of the initial condition pit0 , which I model as a probit function

of (t0, hit0 , δ̂it0 , σ̂t0 , αi, zit0).

This likelihood depends on variables that are unobserved by the econometrician, namely,

slopes beliefs {δ̂it, σ̂2
t }Tt=t0

and heterogeneity in health levels αi. By equations (A5) and

(A6), these time-varying unobserved variables can be written as a function of time-varying

observed health (hit0 . . . hiT ) and time-invariant unobserved variables, namely, beliefs at t0

(δ̂it0 , σ̂
2
t0
) and αi. Hence, I write instead the likelihood of (pit0 , . . . piT ), conditional on vari-

ables observed by the econometrician, (t0, T, hit0 . . . hiT , plive10it0 , . . . plive10iT , zit0 . . . ziT ),

by integrating out this time-invariant unobserved heterogeneity,6

Li =

∫
Lc
i · f(αi, δ̂it0|t0, T, hit0 , . . . hiT , plive10it0 . . . plive10iT , zit0 , . . . ziT )

I added in the conditioning set the variables regarding survival expectations, which according

to equation (A10) provide information on individuals slopes beliefs. The distribution within

the integral has no closed form solution, given that surviving up to t0 adds additional re-

strictions on the underlying individual heterogeneity. Hence, in practice, I approximate this

integral using draws from this distribution gotten by Markov chain Monte Carlo (MCMC).

E.3 Neural network details

Neural networks provide flexible tools for estimation (Goodfellow, Bengio, and Courville

(2016)). They are universal approximators, because they are capable of approximating any

measurable function to any desired degree of accuracy (Hornik, Stinchcombe, and White

(1989)). In the case of a binary outcome, and under some particular specifications, a neural

network resembles a maximum likelihood estimation with logistic errors, where the proba-

bility of success is a complex non-linear index of the inputs. As mentioned by Farrell, Liang,

and Misra (2021), we can think of neural networks as a type of non-parametric or sieve

estimation whereby the basis functions are learned from the data, hence allowing for greater

flexibility.

As in the probit case, I also need to account for the fact that some of the input vari-

ables are unobserved by the econometrician. These unobserved variables are slope beliefs

(δ̂it−1, σ̂
2
t ) and heterogeneous health levels αi. Though they are time-varying variables, they

can be written as functions of time-invariant unobserved variables (δ̂i0, αi) and the observed

health path (hi1, . . . hiTi
) of each individual.7 Thus, following a standard likelihood approach,

6 This expression uses that σ̂2
t is constant across individuals of the same age, and it assumes no other form

of unobserved heterogeneity (an assumption that could be relaxed by assuming a distribution for it).
7 This relationship depends also on the parameters of the health process (ρ, σ2

ϵ ) and the parameters of beliefs
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the objective is to maximize the log of the likelihood integrating out this time-invariant un-

observed heterogeneity. To do so, I follow the insight of EM-type algorithms (Dempster,

Laird, and Rubin (1977)).

Let θ be the parameters governing an outcome variable, in this case, working decisions.

When underlying heterogeneity exists, we estimate θ by maximizing a likelihood that in-

tegrates out that heterogeneity. In this context, EM-type algorithms provide us with two

key insights. First, the parameter θ that maximizes the integrated log-likelihood also maxi-

mizes an alternative specification using the posterior distribution given the outcome variable.

Formally, let ηi denote the vector of unobserved heterogeneity, f(ηi) its prior distribution,

and f(ηi|pi; θ) its posterior distribution given the outcomes pi. The first insight of EM-type

algorithms is to note that

argmax
θ

log

∫
P(pi|ηi; θ)f(ηi)dηi = argmax

θ

∫
log(P(pi|ηi; θ))f(ηi|pi; θ)dηi. (A12)

The expression on the right-hand side is simpler to use. However, because this posterior

distribution depends on θ, it is unknown. Thus, the second insight of EM-type algorithms

is to solve the problem for θ iteratively: in iteration k, the E step uses θk−1 to update the

posterior distribution of the heterogeneity, and the M step estimates θk by maximizing the

right-hand side of equation (A12), using that posterior.

I use this same iterative logic as a convenient implementation for maximizing the in-

tegrated likelihood under a neural-network approach. In this case, the E step is done by

Markov chain Monte Carlo (MCMC) and provides draws from the posterior distribution of

(αi, δ̂i0) given working decisions pi.
8 Those draws, along with individuals’ health histories,

are used to simulate the inputs (δ̂it, σ̂
2
t , αi) and to expand the data. Then, the M step es-

timates θ by using a neural network on the expanded data.9 I start this iterative process

at an M step using an incomplete posterior: the distribution of (αi, δ̂i0) conditional on the

health history (hi1, . . . hiTi
) and the history of survival expectations (plive10i1, . . . plive10iTi

).

This distribution is incomplete because it does not condition on the working decisions, but it

does already include the heterogeneity information contained in the health and expectations

variables.

(b and λ), but it does not depend on the parameters defining the relation between working decisions and
state variables.

8 MCMC uses the likelihood of pi given (αi, δ̂i0) from the previous-iteration M step and the prior distribution

of (αi, δ̂i0).
9 The standard EM algorithm is known to converge, as the likelihood increases in each step of the sequence.
This property does not hold in this case, given the lack of uniqueness of the solution. Therefore, the
approach is not aimed at getting at the unique solution, but as a convenient implementation.

41



E.4 Additional results

Figure E1 shows the average marginal effects of health beliefs δ̂it−1 on working decision

pit estimated by a neural network.

Figure E1: Average marginal effect of health beliefs δ̂it−1 on the probability of working pit

(a) Individuals in their 50s, pit−1 = 1 (b) Individuals in their 50s, pit−1 = 0

(c) Individuals 66 to 75 years, pit−1 = 1 (d) Individuals 66 to 75 years, pit−1 = 0

Notes: Non-parametric results. In each plot, the x- and y-axis correspond to deciles of health hit−1 and mean

slope beliefs δ̂it−1 for the corresponding subsample of the plot. The z-axis corresponds to the work response

(probability).
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F Biomarkers as signals of health

F.1 Distinguishing bad vs good biomarkers results

I use the biomarker results of wave 8 to further distinguish group 1 in two subgroups:

individuals whose biomarker results are within normal levels (good results) and those whose

results are outside normal levels (bad results). Hence, I estimate the following equation:

yiw = β0 + β1dgi + β2dbi + β3wdw + β4wdgi · dw + β5dgi · dw · dbi + ϵiw, (A13)

where as before, dgi is a dummy for group 1 (those who get their blood collected in wave

8), and dw are dummies for waves. The new variable dbi is a dummy for the subgroup of

individuals in group 1 that gets a bad result in any of the 3 tests. That is, total cholesterol

equal or above 240 mg/dL, HDL cholesterol below 40 mg/dL, or blood glucose hbA1c equal

or above 6.4%. Note that in this equation, the interpretation of the coefficients is not the

same as in equation (4). For example, β1 is now comparing the individuals in group 1 who

get good results versus all individuals in group 2, whether or not their (unobserved) test

results are good or bad. Thus, β1 is not a fair comparison. Consequently, the interest in

this equation lies not on the comparison between groups 1 and 2, but on comparing the

differences between group 1 individuals that receive good versus bad results.

Table F1 presents the results of estimating equation (A13). The results suggest the

information contained on bad test results is at least partially already known by individuals,

as they have lower survival expectations even before receiving this information, and their

labor participation is also decreasing ahead of time.
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Table F1: Biomarkers experiment distinguishing bad vs good test results

Survival expectation Working decision
(plive10iw) (piw)

Group 1 (dgi) -0.0039 -0.0066
(0.007) (0.012)

Group 1, bad results (dbi) -0.0037 0.0427
(0.011) (0.018)

Wave 6 (dw6) -0.0142 -0.0723
(0.004) (0.006)

Wave 7 (dw7) -0.0150 -0.1156
(0.005) (0.007)

Wave 8 (dw8) -0.0641 -0.1645
(0.005) (0.007)

Wave 9 (dw9) -0.0357 -0.2040
(0.005) (0.008)

Group 1, wave 6 (dgi · dw6) 0.0058 0.0075
(0.007) (0.009)

Group 1, wave 7 (dgi · dw7) 0.0015 0.0189
(0.007) (0.010)

Group 1, wave 8 (dgi · dw8) 0.0223 0.0214
(0.007) (0.011)

Group 1, wave 9 (dgi · dw9) -0.0005 0.0164
(0.007) (0.011)

Group 1, bad results, wave 6 (dgi · dbi · dw6) -0.0125 -0.0059
(0.010) (0.013)

Group 1, bad results, wave 7 (dgi · dbi · dw7) -0.0175 -0.0381
(0.010) (0.016)

Group 1, bad results, wave 8 (dgi · dbi · dw8) -0.0194 -0.0488
(0.011) (0.017)

Group 1, bad results, wave 9 (dgi · dbi · dw9) -0.0156 -0.0278
(0.011) (0.017)

Constant 0.5397 0.4877
(0.005) (0.008)

Observations 41,930 41,923
R-squared 0.005 0.021
% of group 1 with bad results 23.6 23.6

Notes: Estimation results from equation (A13). The sample consists of N = 8, 386 individuals with non-

proxy interviews who are at least 50 years old in wave 8, and who give a valid answer to plive10iw every

wave between waves 5 and 9. Of these, 7 observations do not have information on piw. Standard errors are

clustered at the household level.
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